
(SEMANTIC WEB) EVOLUTION THROUGH CHANGE LOGS: PROBLEMS
AND SOLUTIONS

Yannis Tzitzikas and Dimitris Kotzinos
Computer Science Department, University of Crete, GREECE,and

Institute of Computer Science - FORTH, GREECE
email:(tzitzik | kotzino)@ics.forth.gr

ABSTRACT
Knowledge evolution is currently a hot research topic
within the Semantic Web community. This paper investi-
gates achange-based Semantic Web, according to which
any modification applied to an ontology should be logged.
The merits of this approach for supporting the process of
evolution are discussed. Subsequently, a number of basic
problems concerning the management of such change logs
are introduced, discussed and analyzed. Finally specific
techniques and efficient algorithms for managing change
logs are provided.

1 Introduction
The statement of Heraclitus ”Everything flows, nothing
stands still” [1], is true also in the SWeb (Semantic Web)
as everything changes and evolves over time: resources
themselves, ontologies, resource annotations and applica-
tion programs. It is not hard to realize that even if we had
a wide arsenal of ontologies for every application domain
and machine readable semantics according to this set, in a
short time a major part of the whole information infrastruc-
ture could become obsolete. Recall that according to recent
surveys the world produces between 1 and 2 exabytes of
unique information per year, 90% of which is digital and
with a 50% annual growth rate1. It is therefore evident that
supporting evolution is very critical for the realization of
the SWeb (and for digital information preservation) and this
justifies the recent interest around this topic.

This paper introduces a ”delta” view of the SWeb and
discusses its merits for supporting evolution. Specifically
it proposes logging every change operation and devising
methods and tools for managing such log files. Specifi-
cally, the contributions of this paper are: (a) it motivates
the need for logging change operations, (b) it formulates
the requirements for managing change logs, and (c) it gives
a number of techniques for managing change logs, includ-
ing algorithms for deciding equivalence and computing re-
ductions, as well as data structures for efficiently construct-
ing ontology versions from change logs. Although several
works have identified the need for logging, this is (to the
best of our knowledge) the first paper that tries to identify
and formulate explicitly the problems related to change log

1http://www2.sims.berkeley.edu/research/projects/how-much-info-
2003

management, and to provide specific techniques and algo-
rithms. In particular, this paper is organized as follows:
Section 2 discusses in brief some aspects of knowledge
evolution that are closely related to our purposes. Sub-
sequently, Section 3 introduces the term ”delta” Semantic
Web and motivates this line of research. Subsequently Sec-
tion 4 introduces some fundamental definitions and prob-
lems regarding the management of change operations, and
Section 5 provides techniques for managing change logs.
Finally, Section 6 summarizes and concludes the paper.

2 Background
Knowledge evolution has several aspects. Assuming a
knowledge management system for the SWeb, supporting
knowledge evolution may amongst others include evolution
strategies [27], declarative languages for bulk updates (like
RUL [20]), ontology changes at run time, graphical on-
tology editors and powerful versioning services (for more
see [15, 22]). Versioning is a task closely related to the
theme of this paper. Versioning (and deltas) are tradition-
ally studied in the context of software engineering, and text
file management (e.g. the classical CVS system). Version-
ing systems commonly employ deltas because it is more
space efficient to keep deltas than keeping all states of an
artifact. The need for ontology versioning and for com-
puting and exchanging deltas of RDF [21] graphs has been
identified and motivated multiple times the recent years,
e.g. in [16], and firstly at [13]. For instance, deltas can
be exploited for reducing the data that have to be trans-
mitted over the network in order to update and synchro-
nize Semantic Web data [3, 6]. In general, and as stated in
[22], ontology-versioning environments should allow users
to: (1) examine the changes between versions visually, (2)
understand the potential effects of changes on applications,
and (3) accept or reject changes (when an ontology is being
developed in a collaborative setting).

Concerning ontology comparison, RDF graphs can be
serialized and used with traditional line-oriented tools.If
graphs are not serialized in a standard method, then a line-
oriented delta can be as large as the data itself even between
files representing the same graph. So such methods are se-
rialization dependent and this is true also for pretty-printed
RDF (for more see [3]). Non text-based approaches for
comparing RDF graphs are described in SemVersion [28],
PromptDiff [22] and [3]. Specifically, [28] proposes two

Diff operations: (a) one returning a triple-set-based dif-
ference, and (b) one semantic-aware which takes into ac-
count also the semantically inferred triples. PromptDiff
[23, 24, 22] is another ontology-versioning environment,
that includes a version-comparison algorithm (based on
heuristic matchers [23, 24]), while the visualization of the
computed difference between two ontologies is discussed
in [22]. There are also quite a lot of works that deal
with the problem of comparing XML documents (e.g. see
[30, 5, 7, 17]).

Concerning the management of change logs, there are
only very few works which only touch the problem and do
not provide any specific technique or insight. For instance,
[26] specifies a set of change operations for controlled
vocabularies and describes mechanisms for synchronizing
different versions based on change logs and user input,
while [25] suggests that log files should keep only addi-
tions and deletions of triples (not ”modify” statements).

3 Towards a ”Delta” Semantic Web

Here we discuss a view according to which the central point
of the SWeb is not the notion of ontology, nor the notion of
triple, but the notion ofchange operation, specifically the
notion ofsequence of change operations. At first note that
in every case, an ontology (or knowledge base in general)
is the result of applying a sequence of change operations.
It follows that if we have stored this sequence then we can
reconstruct the ontology at any point, so there is no need to
have stored the ontology, apart from reasons of efficiency
(i.e. for avoiding the cost of reconstructing an ontology
multiple times). Such an approach, which we could call
”delta” approach, has two main advantages:
Reconstructiveness

At any point in time (now or in the future) we could
execute the sequence of change operations that led to the
current state of the ontology by adopting different assump-
tions. For instance, different belief revision approaches
(e.g. [8, 9, 29, 11]) lead to different results. The appli-
cation of such rules in ontology evolution is elaborated in
[10, 18]. One can easily see that if the sequence of change
operations is available, then we can ”reexecute” it accord-
ing to various different assumptions and rules. For exam-
ple consider the case where a user (or agent) A submits the
triple (myCar, color, Green) and a user B who at later time
submits the triple (myCar, color, Blue). The resulting in-
formation base could keep only the latest information, i.e.
(myCar, color, Blue), or the triple (myCar, color, Green∨
Blue), or the triple (myCar, color, Green∧ Blue), e.g. for
the case that the car is actually turquoise-colored. A modal
logic-based repository could store also the provenance of
the above statements (i.e.K(A, (myCar, color, Green)),
andK(B,(myCar, color, Blue))). For instance, RDF reifi-
cation could be used or the more recently emerged named
graphs [4]. Furthermore, recall the difference betweenup-
dateand revisionas stated in [14], i.e. the difference be-
tween assuming a dynamic world and a static world, which

is also discussed in [12] for the case of RDF. The availabil-
ity of the change log would allow constructing a different
knowledge base for each one of the above assumptions. For
instance, suppose an ontologyO derived by the application
of a sequence of change operations〈u1, . . . , un〉 assuming
a static world (this means that the change operations ex-
press changes of our knowledge about the world, not of
the world itself). If in the future we realize that at time
i the world started changing, then we could reexecute this
sequence by considering a static world for those change op-
erations issued before timei, and a dynamic world for the
rest. This functionality is not possible according to the cur-
rent, ontology-based, semantic web as the notion of time
and sequence is lost and cannot by recovered.
Efficient Version Management

If change operations are logged, then the deltas be-
tween two different versions of an ontology are almost
ready-made: each position in the sequence of change oper-
ations of the log file actually specifies an ontology version,
so the delta between two versions is simply the sequence
of change operations between the corresponding positions.
According to this approach, we do not have to employ any
structural Diff algorithm for computing the delta between
two versions. Recall that the general problem of comput-
ing the differences between two graphs becomes a special
case of the graph isomorphism problem which cannot be
solved in polynomial time (but has not been shown to be
NP-complete either).

Apart from the above, logging changes is useful for
organizational reasons, e.g. for enabling other developers
and tools to process and understand the evolution history of
an ontology [19]. For all these reasons it is worth investi-
gating this ”delta semantic web” approach.

4 Change Logs Management

Here we introduce some basic definitions and then we for-
mulate a number of fundamental problems for supporting
evolution effectively and efficiently.

We shall useB to denote aninformation baseandB
to denote the set of all possible information bases. We use
the term information base to capture both ontologies and
ontology-based repositories. An RDF-based information
baseB is actually a graph, but it is also equivalent to con-
sider it as a set of RDF triples.

Let UT be the set of primitivechange operation
types, andU the (infinite) set of all possiblechange op-
erationswith type in UT . Now let US be the set of all
possiblesequencesof elements inU .

If B is an information base andu ∈ U , then we will
denote byu(B) the information base obtained by applying
u onB. If us is an element ofUS, then we will denote by
us(B) the information base obtained by applying eachu

of us onB in the specified order, e.g. ifus = 〈u1, u2, u3〉
thenus(B) = u3(u2(u1(B))).

Now we will introduce a form of constraints that we
call conditions. A condition C may be True (hold) or

False (not hold) on an information base. Given two con-
ditions C1 and C2, we will write C1 ≤ C2 if the sat-
isfaction of C1 implies the satisfaction ofC2, in other
words, if C1 is stronger (stricter) thanC2. Now let BC

denote the elements ofB that satisfy conditionC, i.e.
BC = { B ∈ B | B satisfiesC}. Now we will in-
troduce a simple method to formalize the notion of con-
ditions. LetΩ denote the set of all possible triples. We
can consider a conditionC as a pair of disjoint subsets of
Ω, i.e. C = (C+, C−) whereC+ ∩ C− = ∅. An in-
formation baseB satisfies a conditionC = (C+, C−), if
C+ ⊆ B andC− ∩B = ∅, i.e. if it contains every element
of C+ and does not contain any element ofC−. Accord-
ing to this view,(C+

1 , C−
1) ≤ (C+

2 , C−
2) iff C+

1 ⊇ C+
2

andC−
1 ⊇ C−

2 . So one advantage of expressing conditions
in this form is that we can decide condition containment
efficiently (with two set containment operations).

4.1 Equivalence and Reduction

Let B denote an information base, i.e. a set of triples.
Suppose thatUT comprises only two types of change op-
erations; one for adding and one for deleting triples, i.e.
UT = {add(< triple >), del(< triple >)}. Now U is
the set of all possible operations that add or delete triples,
plus thenull operationwhich is denoted byǫ. Three rela-
tions of equivalence overUS are defined next.

Def 4.1 Two sequencesus andus′ are:
(a) universally equivalent, denoted byus ≡ us′, if
us(B) = us′(B), for everyB ∈ B,
(b) conditionally equivalent (assumingC), denoted by
us ≡C us′, if us(B) = us′(B) for everyB ∈ B that
satisfies the conditionC, and
(c) equivalent over an information baseB, denoted by
us ≡B us′, if us(B) = us′(B).

Clearly, us ≡ us′ implies us ≡B us′ for every
B ∈ B, and us ≡ us′ implies us ≡C us′ for ev-
ery possible conditionC. For example, lett1 and t2
be two RDF triples, and letB be a set of triples. One
can easily see that〈add(t1), add(t1)〉 ≡ add(t1) and that
〈add(t1), add(t2)〉 ≡ 〈add(t2), add(t1)〉. These were two
examples of universal equivalence relationships. Note that
〈add(t1), del(t1)〉 is not universally equivalent to the null
operationǫ, i.e. 〈add(t1), del(t1)〉 6≡ ǫ. For example, if
B = {t2} then〈add(t1), del(t1)〉(B) = B. However, if
B = {t1} then 〈add(t1), del(t1)〉(B) = ∅. This is why
〈add(t1), del(t1)〉 6≡ ǫ. It is not hard to see that if an infor-
mation baseB does not contain the triplet1, then it holds
〈add(t1), del(t1)〉 ≡B ǫ. This can be expressed using con-
ditional equivalence, i.e. with Def. 4.1(b). Specifically,we
can write〈add(t1), del(t1)〉 ≡C ǫ, where in our case the
conditionC could beC = 6 ∃t1, i.e. C− = {t1}.

For each equivalence relation we can define the cor-

responding decision problem, i.e.us
?
≡ us′, us

?
≡B us′

and us
?

≡C us′, which are quite important as it will be

made clear later on. Concerning conditional equivalence,
note that sinceC1 ≤ C2 ⇔ BC1 ⊆ BC2, it follows that
if C1 ≤ C2 andus ≡C2 us′, thenus ≡C1 us′. So if
we want to prove equivalence given a conditionC, we can
try proving it using a condition less strict thanC. It is not
hard to see that equivalence assumingC, i.e. ≡(C+,C−),
can capture equivalence over information base, i.e.≡B.
Specifically,≡B can be written as≡(B,∅). It follows that
Def. 4.1.(b) is more general than Def. 4.1.(c). So we can
hereafter consider two kinds of equivalence: universal and
conditional.

We will now define the notion ofreductionwhich is
important for optimization. Letsize(us) denote the num-
ber of change operations in a sequenceus.

Def 4.2 Given aus ∈ US we define asuniversal reduction
of us, denoted byr(us), the smallest in size element (or
elements) ofUS that is universally equivalent tous.

This means that for allB ∈ B it holdsr(us)(B) =
us(B), and there is nous′ ∈ US − {r(us)}, such that
us′(B) = us(B) andsize(us′) < size(r(us)). (In this
paper we use ”−” to denote set difference.) Of course, there
may be more than one equivalent sequences all having the
same minimum size. So the reduction is not necessarily
unique, however its size is unique. Analogously, we can
define the reduction of a sequenceus ”over B” or ”given
C” (i.e. with respect to≡B or≡C).

5 Techniques for Change Logs Management
5.1 Deciding Equivalence

Below we present an algorithm that takes as input a se-
quence of change operationsus and returns two sets de-
noted byA andD. The first contains the triples that cer-
tainly belong to the outcome of the execution ofus, while
the second contains the triples that certainly do not belong
to the outcome of the execution ofus. Clearly,A∩D = ∅.
The algorithm AD computes these sets by scanningus

once. For each triple that appears inus (either in an Add
or in a Del operation) the algorithm keeps a variableX that
ranges{−1, 1}.
Alg. AD

Input: a sequence of change operationsus = 〈u1, . . . , un〉
Output: the setsA andD of the sequenceus

(1) A := D := V isited := ∅
(2) for i = 1 to n do
(3) t = operand triple ofui

(4) if t 6∈ V isited then
(5) V isited := V isited ∪ {t};
(6) if ui = Add(t) then
(7) t.X :=1
(8) elseifui = Del(t) then
(9) t.X :=-1
(10) for eacht ∈ V isited do
(11) if t.X = 1 thenA := A ∪ {t}
(12) if t.X = −1 thenD := D ∪ {t}
(13) return(A,D)

Now suppose that we want to decide whetherus and
us′ are universally equivalent. For doing so we can ap-
ply AD on each sequence in order to compute the sets
A(us), D(us) and A(us′), D(us′). The motivation for
computing these sets is evident from the following propo-
sition.

Prop. 1 us ≡ us′ iff A(us) = A(us′) and D(us) =
D(us′).

Proof: The proof follows easily from set theory.
(⇒) We should prove that ifus ≡ us′, then both equalities
hold. Let’s suppose that this is not true.

At first suppose thatA(us) 6= A(us′), specifically
suppose that there is at ∈ A(us)−A(us′). In this caseus

andus′ cannot be equivalent because their application on a
B that does not containt would be different.

Now suppose thatD(us) 6= D(us′), e.g. suppose
thatt ∈ D(us)−D(us′). In this caseus andus′ cannot be
equivalent because their application on aB that containst
would be different.
(⇐) We should prove that ifA(us) = A(us′) andD(us) =
D(us′), thenus andus′ are universally equivalent. Sup-
pose they are not, i.e. suppose there exist aB such that
us(B) 6= us′(B). Specifically suppose that there exist a
triple t such thatt ∈ us(B) − us′(B). We can distinguish
the following two cases:
(a) t ∈ B. As t ∈ B and t 6∈ us′(B), it follows that
t ∈ D(us′). This contradicts with our hypotheses that
D(us) = D(us′) and thatt ∈ us(B).
(b) t 6∈ B. As t 6∈ B andt ∈ us(B), it follows that t ∈
A(us). This contradicts with our hypotheses thatA(us) =
A(us′) and thatt 6∈ us′(B). ⋄

Recall that the time complexity of algorithm AD is
O(n) as it scansus once. It follows that the time com-
plexity for deciding whetherus ≡ us′ is O(N) where
N = max(size(us), size(us′)). Now assume that we
want to decide whetherus andus′ areconditionally equiv-
alent, specifically suppose that we want to decide whether
us ≡(C+,C−) us′. Again, we first apply AD on each se-
quence. Subsequently, we can exploit the following propo-
sition.

Prop. 2 us ≡(C+,C−) us′ iff: (a) A(us)−C+ = A(us′)−
C+, and (b)D(us) − C− = D(us′) − C−.

Proof: The proof follows easily from set theory. For rea-
sons of space it is omitted.

For example, the role of equality (a) is evident
in the following example: 〈Add(t1), Add(t2)〉 ≡(t1,)

〈Add(t2)〉. The role of equality (b) is evident in
the example: 〈Del(t1), Del(t2)〉 ≡(,t1) 〈Del(t2)〉.
Both (a) and (b) are needed to yield the equivalence:
〈Del(t1), Add(t2), Add(t3)〉 ≡(t2,t1) 〈Add(t3)〉.

This section described an algorithm for deciding uni-
versal and conditional equivalence whose complexity is lin-
ear with respect to the size of the sequences.

5.2 On Computing Reductions

In this section we give an efficient method that derives the
universal reduction of any update sequence. At first we
run the algorithm AD(us) for computing the setsA andD.
Based on these sets we can produce a sequence of update
operationsus′ such thatA(us′) = A andD(us′) = D.
Finding such aus′ is not so difficult. In fact, for any given
pair (A, D) there are several possible ways to derive a se-
quenceus′ such thatA(us′) = A andD(us′) = D.

Prop. 3 The minimum size of a sequenceus′ such that
A(us′) = A andD(us′) = D is equal to|A| + |D|.

An algorithm that takes as input any sequence of
change operations and returns an equivalent sequence with
the minimum size (i.e. the size stated at Prop 3) is given
next.
Alg. REDUCE

Input: a sequence of change operationsus

Output: the reduction ofus, i.e. r(us)

(1) (A, D) := AD(us)
(2) for eacht ∈ D do
(3) out(”Del(t)”)
(4) for eacht ∈ A do
(5) out(”Add(t)”)

The algorithm uses a commandout for writing the
output file. The time complexity of REDUCE is again lin-
ear. Let’s now discussconditional reduction. Consider a
sequenceus and suppose that we want to find the short-
est in size sequenceus′, such thatus ≡(C+,C−) us′. We
can find this reduction by exploiting Prop. 2 and the al-
gorithm REDUCE. Specifically, at first we run the algo-
rithm AD(us) for computing the setsA andD. Then we
setA′ = A − C+ andD′ = D − C−. The final step is
to produce a sequence of update operationsus′ such that
A(us′) = A′ andD(us′) = D′. This can be done by algo-
rithm REDUCE if we delete line (1) and we use(A′, D′)
instead of(A, D) at the rest of the algorithm. The correct-
ness of this method follows easily from Prop. 2.

5.3 Semantics-aware Change Log Management

So far we have treated triples as independent abstract ele-
ments. However, triples are interrelated and they have se-
mantics. For instance, we may have a triple of the form
Sb(B, A) meaning thatB is a subclass ofA, or triples of
the formIn(o, C) meaning that resourceo is an instance of
the classC. Below we give two examples of semantically
equivalent sequences:

〈Add(Sb(C, B)), Add(Sb(B, A)), Add(Sb(C, A))〉 ≡ (1)

〈Add(Sb(C, B)), Add(Sb(B, A))〉 (2)

〈Add(In(o, C)), Add(Sb(C, D)), Add(In(o, D))〉 ≡ (3)

〈Add(In(o, C)), Add(Sb(C, D))〉 (4)

The techniques we have described so far will fail to iden-
tify the above equivalence relationships. Below we discuss
three approaches to tackle this problem.
(a) Avoid logging redundant change operations.
One approach is to avoid logging change operations that

do not actually have any effect on the information base.
For instance,Add(Sb(C, A)) at line (1) is redundant. The
same is true forAdd(In(o, D)) at line (3). If such change
operations are not logged, then we can bypass the problem.
Although we could have ontology editors that follow this
policy, in general it is not easy to enforce this policy.
(b) Complete-Reduce change logs.
Before checking whether two sequences are equivalent we
could ”complete” each sequence by adding all semantically
inferred triples. Alternatively, and preferably, we could”re-
duce” each sequence by deleting all redundant triples. For
instance, this can be achieved by applying an algorithm that
computes the reflexive and transitive reduction of the bi-
nary relation that is obtained if we take the union of the
subclassOf relation and theinstanceOf of relation. Af-
ter this completion or reduction we can check equivalence
and compute reductions using the techniques that we pro-
vided earlier.
(c) Late Completion/Reduction.
A more realistic and more efficient approach is to exploit
Prop. 1 and Prop. 2. Specifically, instead of ”complet-
ing” (or ”reducing”) the entire sequences, we could ”com-
plete” (or ”reduce”) only the setsA andD which are used
for deciding equivalence. Obviously, this approach is more
efficient than approach (b), because in this way we avoid
repetitions and compensating operations. An even more ef-
ficient approach is sketched below. We first check whether
the equalities hold (i.e. whetherA(us) = A(us′), etc). If
both equalities hold then we conclude that the sequences
are equivalent and there is no need for anything else. If not
then we start checking in more detail each pair of sets that
is not equal. For instance, suppose thatA(us) 6= A(us′).
If an elementt belongs toA(us) but does not belong to
A(us′), then we check if it is inferred byus′, i.e. if
t ∈ Cons(A(us′)) whereCons denotes the consequence
operator that completes a set of triples with those that are
semantically inferred. If this is not true then we conclude
that the sequences are not equivalent, otherwise we pro-
ceed analogously for all elements of the symmetric differ-
ence ofA(us) andA(us′) and then for the pairD(us) and
D(us′). An alternative approach would be to use reduc-
tion instead of completion, i.e. instead of checking whether
t ∈ Cons(A(us′)), to check whethert ∈ Red(A(us))
whereRed is an operator that eliminates the semantically
inferred triples.

5.4 Constructing Ontology Versions from Logs

An important question is whether from the log file we can
compute the current (or a past) version of the ontology ef-
ficiently. The cost of constructing an ontology versionOi,
wherei corresponds to the time when operationui was is-
sued (1 ≤ i ≤ n), is O(i), so for constructing the latest
version of the ontology the cost isO(n). Clearly, if Oi is
already constructed andj > i, then the cost for construct-
ing Oj isO(j − i). It is worth noticing here that the ability
to compute reductions could be exploited for reducing the

ontology construction costs (as well as the storage space
requirements of the change logs), according to application-
oriented requirements. For instance, if the desired policy
is to keep only one version per week, then instead of keep-
ing stored the entire sequence of change operations for a
given week, we can reduce them and keep stored only their
reduction.

Now suppose that we want an efficient method to de-
cide whether a particular triplet belongs to versionOi (in-
dependently of whether or not reduction has been com-
puted). Below we present a data structure which can be
constructed once and then used for answering quickly this
kind of questions. Specifically, this data structure keeps for
each triplet two lists of identifiers, denoted byadded(t)
anddeleted(t): the first is the set of identifiers of the op-
erations that addt, while the second is the set of identifiers
that deletet. The algorithmMakeVOtakes as input a se-
quenceus and constructs this data structure.
Alg. MakeVO

Input: a sequence of change operationsus

Output: a VO data structure

(1) T := ∅
(2) for i = 1 to n do
(3) if ui = Add(t) then
(4) if t 6∈ T then
(5) T := T ∪ {t};
(6) added(t) := ∅; deleted(t) := ∅
(7) added(t) := added(t)∪ {i}
(8) else // this means thatui = Del(t)
(9) deleted(t) := deleted(t)∪ {i}
(10) return

After the execution of this algorithmT will contain all
triples that have been created during the lifetime of the on-
tology. Notice that for every triplet ∈ T , the setsadded(t)
anddeleted(t) are disjoint. The storage space of this data
structure isO(n) wheren the size ofus. In practice, it
will be less than the space occupied byus, because each
triple is stored once. Notice that the same algorithm can
be also used for incrementally updating the data structure
when new change operations are issued and logged.

Now suppose that we want to decide whether a par-
ticular triplet is an element of a version withid = X . Let
a = max{ i ∈ added(t) | i ≤ X}, and
b = max{ i ∈ deleted(t) | i ≤ X}.
It is evident thatt belongs to versionX , iff a is defined
and it holdsa > b. For example, suppose thatadded(t) =
{3, 9, 18} anddeleted(t) = {5, 14}. For X = 11 we get
a = 9 andb = 5, sot belongs to version 11. ForX = 8 we
geta = 3 andb = 5, sot does not belong to version 8. It
follows that the cost to decide whether a triplet belongs to
a version isO(f) wheref is the number of timest has been
created and deleted. Asadded(t) anddeleted(t) are dis-
joint, both lists can be stored in one single list. In this way
(and with binary search) the cost reduces toO(log(f)). At
last note that from this data structure we can reconstruct the
original sequence of update operations.

Summarizing, we can say that the proposed approach

is realistic in terms of storage space requirements and com-
putational cost.

6 Concluding Remarks

This paper described a Semantic Web that is based on a
change-based version model, instead of the currentstate-
based version model. According to this view every change
operation should be logged as the resulting change logs can
be a source of very valuable information that could be ex-
ploited in several different ways now and in the future. Re-
alizing this approach requires devising efficient methods
and tools for managing such change logs. The latter re-
quires specializing and elaborating on the problems stated
and formalized in Section 4, which revolve around the no-
tions ofequivalenceandreduction. For these problems we
provided efficient algorithms whose time complexity is lin-
ear. From the analysis presented in this paper we can draw
the conclusion that achange-based Semantic Web would
not suffer from any performance drawback. There are sev-
eral issues for further research including algorithms for
managing change operations of different granularity, and
semantics-based optimizations. Furthermore, as ontologies
commonly import and reuse other, remotely stored, ontolo-
gies, it is worth devising distributed change log manage-
ment algorithms (e.g. along the lines of [2]).
Acknowledgement: This work was partially supported by
the EU project CASPAR (FP6-2005-IST-033572).

References

[1] Heraclitus (535 - 475 bc).

[2] Mikhail J. Atallah, Michael T. Goodrich, and S. Rao Kosaraju. Par-
allel algorithms for evaluating sequences of set-manipulation opera-
tions. J. ACM, 41(6):1049–1088, 1994.

[3] Tim Beners-Lee and Dan Connoly. ”Delta: An Ontology for
the Distribution of Differences Between RDF Graphs”, 2004.
http://www.w3.org/DesignIssues/Diff (version: 2004-05-01).

[4] J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, prove-
nance and trust.Proceedings of the 14th international conference
on World Wide Web, pages 613–622, 2005.

[5] S. Chawathe and H. Garcia-Molina. ”Meaningful Change Detection
in Structured Data”. InProcs. of SIGMOD’97, 1997.

[6] Russell Cloran and Barry Irwin. ”Transmitting RDF graphdeltas
for a Cheaper Semantic Web”. InProcs. of SATNAC’2005, South
Africa, September 2005.

[7] G. Cobena, S. Abiteboul, and A. Marian. ”Detecting Changes in
XML Documents”. InProcs. of IEEE Intern. Conf. on Data Engi-
neering, ICDE, San Joce, CA, 2002.

[8] Mukesh Dalal. “Investigations Into a Theory of Knolwedge Base
Revision”. InConference on Artificial Intelligence, AAAI-88, pages
475–479, St. Paul, Minesota, August 1988.

[9] Thomas Eiter and Georg Gottlob. On the complexity of proposi-
tional knowledge base revision, updates, and counterfactuals. In
Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, pages 261–273, 1992.

[10] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. “On
Applying the AGM Theory to DLs and OWL”. InInternational
Semantic Web Conference, pages 216–231, 2005.

[11] P. Gärdenfors. “Belief Revision: An Introduction”. In P. Gärdenfors,
editor, Belief Revision, pages 1–20. Cambridge University Press,
1992.

[12] Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. “The
Meaning of Erasing in RDF under the Katsuno-Mendelzon Ap-
proach”. InProceedings WebDB-2006, Chicago, Illinois, 2006.

[13] Jeff Heflin, James Hendler, and Sean Luke. “Coping with Changing
Ontologies in a Distributed Environment”. InProceedings of AAAI-
99 Workshop on Ontology Management, 1999.

[14] H. Katsuno and A. O. Mendelzon. “On the Difference between Up-
dating a Knowledge Base and Revising it”. InProceedings KR-91,
pages 380–395, 1991.

[15] M. Klein and D. Fensel. ” Ontology versioning for the Seman-
tic Web”, 2001. International Semantic Web Working Symposium
(SWWS), USA.

[16] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Ontology
versioning and change detection on the web. InProcs of the 13th
European Conference on Knowledge Engineering and Knowledge
Management (EKAW02), pages 197–212. Springer, 2002.

[17] Kyriakos Komvoteas. “XML Diff and Patch Tool”. Master’s the-
sis, Computer Science Department, Heriot-Watt Universityin Edin-
burgh, Scotland, 2003.

[18] Pieter De Leenheer. ”Revising and Managing Multiple Ontology
Versions in a Possible Worlds Setting”. InProcs of On The Move to
Meaningful Internet Systems Ph.D. Symposium (OTM 2004), pages
798–818, Agia Napa, Cyprus, 2004.

[19] Yaozhong Liang, Harith Alani, and Nigel Shadbolt. ”Ontology
Change Management in Protege”. InProcs of the 1st AKT Doctoral
Symposium, Milton Keynes, 2005.

[20] M. Magiridou, S. Sahtouris, V. Christophides, and M. Koubarakis.
”RUL: A Declarative Update Language for RDF”. InProcs. 4th
Intern. Conf. on the Semantic Web (ISWC-2005), Galway, Ireland,
November 2005.

[21] E. Miller, R. Swick, and D. Brickley (editors). RDF and RDF
Schema, W3C, 2003. http://www.w3.org/RDF.

[22] Michel Klein Natalya F. Noy, Sandhya Kunnatur and Mark A.
Musen. ”Tracking Changes During Ontology Evolution”. InThird
International Conference on the Semantic Web (ISWC-2004), His-
roshima, Japan, 2004.

[23] N. F. Noy and M. A. Musen. ”PromptDiff: A Fixed-point Algorithm
for Comparing Ontology Versions”. InIn 18th Nat Conf on Artifi-
cial Intelligence (AAAI-2002), pages 744–750, Edmonton, Alberta,
2002.

[24] N. F. Noy and M. A. Musen. “Ontology versioning in an ontol-
ogy management framework”.IEEE Intelligent Systems, 19(4):6–
13, 2004.

[25] D. Ognyanov and A. Kiryakov. ”Tracking Changes in RDF(S)
Repositories”. InProcs. of the 13th Intern. Conf. on Knowledge
Engineering and Management, EKAW’02, Spain, 2002.

[26] D. E. Oliver, Y. Shahar, E. H. Shortliffe, and M. A. Musen. “Rep-
resentation of Change in Controlled Medical Terminologies”. AI in
Medicine, 15:53–76, 1999.

[27] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic.User-
driven ontology evolution management. InProceedings of the 13th
European Conference on Knowledge Engineering and Knowledge
Management EKAW, volume 2473, pages 285–300. Springer, 2002.

[28] Max Volkel, Wolf Winkler, York Sure, Sebastian RyszardKruk, and
Marcin Synak. ”SemVersion: A Versioning System for RDF and
Ontologies”. Heraklion, Crete, May 29 June 1 2005. Procs. ofthe
2nd European Semantic Web Conference, ESWC’05.

[29] M. Winslett. Updating Logical Databases. Cambridge University
Press, 1990.

[30] K. Zhang, J.T.L Wang, and D. Shasha. ”On the Editing Distance Be-
tween Undirected Acyclic Graphs and Related Problems”. InProcs.
of the 6th Annual Symposium on Combinatorial Pattern Matching,
pages 395–407, 1995.

