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Abstract. We present an approach where we combine attention with value maps for 
the purpose of acquiring a decision-making policy for multiple concurrent goals. The 
former component is essential for dealing with an uncertain and open environment 
while the latter offers a general model for building decision-making systems based on 
reward information. We discuss the multiple goals policy acquisition problem and 
justify our approach. We provide simulation results that support our solution. 

1 Introduction 

There is currently much research interest in developing autonomous agents. One of 
the primary problems in the field is that of multiple goal satisfaction. Approaches 
such as reinforcement learning have provided a general method for modelling the 
goal satisfaction problem for the case of a single goal at a given time [1]. Finding a 
suitable policy for multiple concurrent goals is a generalisation of the previous prob-
lem. Again reinforcement learning methods can be applied directly. However, the 
approach lacks the ability to deal with an ever-changing environment in an immediate 
way. This can be handled by attention. There is much work in recent years that has 
been devoted in understanding attention [2]. It has been modelled in a control theory 
framework by the second author [3]. Inspired by the above developments we have 
developed recently the Attentional Agent architecture [4] which combines a goals-
based computational model with an attention mechanism for selecting priority of 
goals dynamically in run time, for handling novelty and unexpected situations as well 
as learning of forward models based on the level of attention [5]. We now extend this 
model further to allow the attention mechanism to act as an alarm system when we 
approach limiting conditions. This model can be combined with a reinforcement 
learning approach for single goals to provide the solution for multi-goal policy acqui-
sition. The structure of the paper is as follows: In section 2 we present a concrete 
problem statement and we describe the environment used for testing a robotic agent. 
In section 3 we review the Attentional Agent Architecture and its extension to multi-
goal policy acquisition. In section 4 we present supporting simulations.  
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2 Problem Specification 

To test the proposed architecture we select a robot navigation task. The concrete 
setting is as follows: We assume the existence of a suitable space where the robotic 
agent moves from a point A to a point B transporting some item of interest. The high-
level decomposition of the task is shown in Fig. 1. Transport is the primary agent 
goal. At the same time there is the goal of maintaining itself in a working condition, 
which appears in Fig. 1, as the Power Monitor goal. Inside the space there are a num-
ber of stationary and moving objects. The overall task is to provide the Transport 
service of moving items from point A to B while avoiding collisions with other mov-
ing and stationary objects and also by making sure that the robot always has enough 
power. If the power level drops low the agent should recharge itself and return to the 
previous task. Recharging can take place in the recharge station (Terminal C) or by 
collecting small charges from objects of class Obj+ (by moving to the same grid cell). 
Correspondingly, objects of class Obj- should be avoided as they reduce the power 
level if touched. We assume that objects Obj+ carry a reward of +1, while objects of 
Obj- carry a reward of -1. Moving to goal position B achieves a reward signal of +20. 
All other states are assumed as having zero reward initially. A possible configuration 
of the space is shown in Fig. 2. 

 

 
Fig. 1. Goals Tree of agent. 

In Fig. 1 there are three high-level goals: Transport, Collision-Avoidance and Power 
Monitor. The Transport goal executes a sequential program of four sub-goals {Goto 
A, Get Item, Goto B, Leave Item}. The Goto A goal is further decomposed to Route-
Planning and Move goals. All goals are executed ultimately by calling primitives 
which are not shown in Fig. 1. The Route-Planning goal is responsible for collecting 
the current sensory state and for calculating a new position for moving the agent 
closer to the goal position, based on the value map of the corresponding goal. Then it 
passes this new location to the Move goal to execute it. Internally it uses predictive 
models (Forward Models) for forecasting the possible position of the other moving 
agents. 



 
Fig. 2. A possible configuration of GridWorld. MObj x represent a moving object x. SObj x 
represent static objects. Obj+/- represent objects that are assumed static but having a posi-
tive/negative influence on the power level of the agent if touched. Terminal C is the recharging 
station. Terminals A and B is the start and finish position of the Transport goal. 

Given that a location is “closer” to the target position and it will not be occupied by 
other agents in the next time instance, the location is selected. During the execution 
of the actual move, it might occur that some other agent moved to the calculated loca-
tion, because our movement prediction was wrong. We guard against such a case 
using the Collision-Avoidance goal, which implements a motor attention scheme. 
This goal is normally suppressed by the Transport goal; if however a collision is 
imminent, an attention event is created, which in turn raises the overall Action-Index 
of the goal. The final result is that the Transport goal is suppressed due to losing the 
global attentional competition against the Collision-Avoidance goal. The Power 
Monitor goal monitors the current power level and if low it will re-direct the robot to 
the recharging terminal or to a nearby Obj+ object. The policy is not hard-wired but 
learnt as described in section 3.2. Care is given to avoid objects Obj-. Collision with a 
static or moving object corresponds to a reward of -5 and -10 respectively.  We also 
assume that the maximum power level is 1000 power units, motion expends 1 power 
unit per cell, and touching Obj+ and Obj- increases / reduces the power level by +10/-
10 units with a reward of +1/-1 respectively. 

3 Multiple Goal Policy Acquisition for Attentional Agents 

3.1 Attentional Agent architecture 

The Attentional Agent architecture was thoroughly discussed in [4]. An Attentional 
Agent is a system which has the following major components: 1. A goal set, organ-
ised in a tree (GoalsTree), see Fig 1; 2. A complex execution unit, called a goal, with 
an internal structure; 3. A global attention-based competition mechanism, which in-



fluences the priority of the goals; 4. A local attention-based mechanism, in the scope 
of a goal, which detects novel states and initiates learning of new models or adapta-
tion of existing ones. The local attention process works in dual modes: sensory and 
motor ones; 5. Each goal contains the following major modules: State Evaluation, 
Rules, Action Generation, Forward Models, Observer, Attention (local) Controller, 
Monitor, Goals. The first five modules are implemented by models which can be 
adapted if erroneous performance is realised. We consider here that the Rules module 
is a Value Map that is created through reinforcement learning; 6. Partitioning the 
input and output spaces into suitable sub-sets. The input space is the sensory space, 
while the output space is the action space. We extend this model to include in the 
local scope an additional attention process that of the Boundary Attention. This proc-
ess is responsible for raising an attention event when we approach a limiting condi-
tion in the scope of a goal. For example when the power level is low this can be con-
sidered as a boundary condition that must capture attention and thus increase the 
priority of the goal. This relates to general homeostasis mechanisms of biological 
agents. When a homeostatic variable moves near (or out of) the boundary of its pre-
ferred range then attention is raised so that appropriate corrective action will be taken.  

3.2 Policy acquisition for multiple goals 

Our proposed solution for multiple goals policy acquisition is based on the following 
ideas: i. Use of attention allows the agent to have fast reaction and deal with novel 
and unexpected situations that develop in a time scale faster than that used for single-
goal policy learning; ii. Instead of learning an overall (joint) policy for the current set 
of goals directly it is simpler to combine individual goal policies to an overall strat-
egy. Learning an overall policy seems unlikely in biological agents as one has to store 
a value map (of the policy) for each combination of goals ever encountered; iii. We 
effectively acquire an overall policy by selecting at each time instance only one active 
goal and the action output of the agent is the action selected in the scope of the active 
goal. The learning of the goal’s policy takes place in an individual basis using a stan-
dard RL method; iv. The scheme for selecting priorities for a set of competing goals 
is based on the following formula: 

ActInd=(W+S-AI+M-AI+B-AI+∑ActInd) / (4 + # Contributing Children) (1) 

Formula (1) is an extension of the corresponding formula in [4]. ActInd is the action 
index of goal, which effectively controls the priority of the goal in global competi-
tion. W is the “intrinsic” weight. S-AI is the sensory attention index (to capture novel 
and unexpected situations), M-AI is the motor attention index (to capture impending 
dangers), B-AI is the boundary attention index discussed in 3.1. All attention indices 
and the intrinsic weight are bounded in [0,1].  The sum of Action Indices in the nu-
merator is over all contributing children in the sub-tree of a goal. A child is contribut-
ing if any of its corresponding attention indices is non-zero. This allows for the 
propagation of attention events in the goal hierarchy; v. Non-competing goals (due to 
referring to a different sub-region of the action space) are processed in parallel. 



4 Simulation Results 

We use the setting described in section 2, the set of goals in Fig. 1, formula (1) for 
selecting goal priorities and we define the sensory and motor attention indices as in 
[4,5]. The boundary attention index is defined as a sigmoid function over the value 
map of the energy states of the agent, and it is given by (2): 

B-AI=1/(1+exp[ Val(E(t)-Emax/2) ] ) (2) 

where Val(·) is the value for the corresponding energy state (as the sum of all future 
discounted rewards) – it takes negative values for negative energies -, Emax is the 
maximum energy level (1000 units) and the energy value map has been acquired as 
all other value maps using the Q-learning algorithm [6]. The general methodology for 
training was as follows: We first trained the agent in each sub-problem separately 
using the Q-learning method with parameters of a=0.1 and γ=0.9 for learning and 
discount rate respectively. Then we allowed the existence of multiple goals concur-
rently. The selected action at each time step was determined by the currently active 
goal by using its own value map acquired during the separate training. The active 
goal is the goal which wins the attentional competition. The maximum number of 
training sessions for learning a value map was a million iterations. The intrinsic 
weights in (1), which code the relative importance of goals are given as relative ra-
tios: |ValG|/∑ |ValG| of the values for each goal, in our case: +20 for Transport (point 
B), +10 for Power Monitor (point C), -10 for MObj collision, -5 for SObj collision, 
+1 for Obj+ collision, -1 for Obj- collision and 5 for Collision Avoidance respec-
tively. When approaching one of SObj, MObj, Obj+, Obj- closer than a threshold 
range R=3 cells, we calculate the S-AI and M-AI indices as described in [4,5]. Add-
ing their contribution to (1) allows the alternation of priorities of goal execution and 
thus the determination of the currently active goal. The size of the GridWorld was 
50x30 cells. We assume that when the agent reaches point B it then returns to A for 
starting another Transport action. It continually expends energy. We run 50 simula-
tions to check the probability of collisions and switching from the Transport goal to 
the Power Monitor goal. Each simulation session included the execution of 10 Trans-
port commands (so as to deplete the energy and force a recharge). The results show 
that the agent successfully switched to the appropriate goal’s value map for action 
selection in all cases. In some cases collisions with moving objects took place due to 
false predictions regarding the future position of the objects. With further training of 
the predictive models for the motion of moving objects, the collisions are decreased, 
as it was also described in [5].  We used from 5-15 moving objects having different 
paths per simulation as in [5]. The overall performance for the agent is shown in Fig. 
3. We show a curve that depicts the ratio of lengths of path A-B-C-A for the 
best/current policy against the number of training iterations for acquiring the policy 
(250K, 500K, 750K and 1M). The “best” policy was determined by us empirically 
using the optimal action at each time step. The curve is drawn by using the total 
length of the overall curve from point A to B and back. We used only the curves 
during which we had a recharge event and we averaged the lengths over the 50 simu-
lation sessions.  It is clear that as the learnt individual goal policies approach their 



optimal targets the actual length comes closer to the shortest length. In Fig. 3 all poli-
cies corresponding to goals were trained to the same level.  

 

Fig. 3. Ratio of path lengths (A-B-C-A) of “best” vs current overall policy against the number 
of iterations for learning a policy. The path includes a recharge event and the current policy 
lengths are averaged over 50 simulations. 
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