
Flexible and High-Performance Anonymization of
NetFlow Records using Anontool

Michalis Foukarakis∗, Demetres Antoniades∗, Spiros Antonatos∗, Evangelos P. Markatos∗
∗Institute of Computer Science (ICS),

Foundation for Research and Technology Hellas (FORTH),
P.O BOX 1385, Heraklion Crete,

GR7-1110, Greece
{mfukar,danton,antonat,markatos}@ics.forth.gr

Abstract—Netflow is a protocol widely adopted by the security
and performance measurements community. Nowadays, many
distributed applications and architectures base their functionality
on Netflow data collected at diverse environments. However,
communities and administrators are reluctant to share exported
Netflow data for privacy reasons. As a consequence, the effective-
ness of distributed approaches is limited due to lack of input data.
To overcome this limitation, anonymization on Netflow data is
proposed for sharing. However, the available tools are either pro-
prietary or of very limited functionality. Towards this dir ection,
we propose and implementanontool, that allow administrators
to anonymize Netflow data in a highly customizable way. A
comparison of anontool with existing solutions is providedalong
two dimensions: functionality and performance. Anontool can
anonymize traffic even at high bandwidth rates, outperforming
most of the tools and having same performance with specialized
– but very limited in functionality – approaches.

I. I NTRODUCTION

Network management and security is a distributed process
that requires information from various sources, located in
multiple points of presence. Network activity log sharing has
gained significant popularity nowadays, not only among com-
puter security engineers, but also among researchers, develop-
ers and educators. Different groups from diverse communities
seek different kinds of information within these logs, each
for their own purpose. For example, security engineers try to
identify anomalies in the traffic pattern, developers try tospot
performance problems of their network applications and many
more.

To accommodate this increasingly popular need for sharing
information as well as the fundamental lack of trust between
different communities, several tools have appeared which
provide the means to anonymize the potentially sensitive
information contained within these logs. Anonymization tools
provide an interface to accessing this information and a
variety of algorithms to “hide” it from plain view, depending
on the interests and concerns of their users. The tradeoff
with anonymization is that when most of the information
is altered, the data become less useful and descriptive but
when anonymization is performed on a small part, sensitive
information may be revealed.

A popular format of network activity logs is the Cisco
NetFlow [1] format, which provides important information
about network usage and traffic routing. The NetFlow format

is based on the concept of flow. In general, a flow is defined
as a set of packets which share a common property, although
several different types of flows have been proposed. Network
activity logs usually adopt the concept of a flow in storing
information, and subsequently each tool that processes such
logs does so. The most recent evolution of the Netflow format
is version 9, which is currently the basis of the IETF [2]
standard for information export. In the NetFlow definition,
Cisco uses the 5-tuple definition of a flow, where a flow is
defined as a unidirectional sequence of packets that share
source and destination IP addresses, source and destination
port numbers, as well as the IP protocol value.

Various tools and techniques have been proposed and imple-
mented for anonymization purposes. However, most of them
provide limited functionality and are customized for specific
purposes. Our approach is calledanontool and it is a
general-purpose tool that can anonymize live or stored traffic,
Anontool is based on the concept of per-field anonymization,
that is, users can define what anonymization function should
be applied on each application field. Anontool supports a
number of protocols but on this work we focus on the Netflow
protocol. Anontool offers a variety of anonymization functions
and at the same time achieves high level performance, unlike
to other tools of its category. In this work, we present a
technical overview of anontool, along with a comparison with
similar tools. The comparison is made along two major axis:
functionality and performance.

The rest of the paper is organized as follows. In Section
II we describe the work on anonymization techniques and
tools, Section III presents an overview of anontool and its
capabilities and Section IV includes the evaluation of anontool
against other Netflow anonymization tools. We summarize and
conclude in Section V.

II. RELATED WORK

Several works have been done in the field of anonymizing
traces but only a limited number of those works address the
issue of anonymizing Netflow data. In this Section, we present
a review of related work around anonymization, both on
general anonymization approaches as well as Netflow-specific
ones.

Tcpdpriv [3] is a well-known anonymization tool that takes
as input traces written in tcpdump [4] format and removes
sensitive information by operating only on packet headers.
TCP and UDP payload is simply removed, while the entire
IP payload is discarded for protocols other than TCP or
UDP. The tool provides multiple levels of anonymization,
from leaving fields unchanged up to performing more strict
anonymization, like mapping IP addresses to integers or prefix-
preserving anonymization. Tcpdpriv works only on TCP/IP
headers, thus it does not provide any functionality for Netflow
anonymization. Peuhkuri in [5] addresses the problem of IP
address anonymization. Cryptographic algorithms that require
small amount of memory are applied in order to provide
consistent anonymization across different sessions. Xu, Fan,
Ammar et al. in [6], [7] also apply cryptographic algorithmsto
provide prefix-preserving anonymization. Both works however
do not extend to Netflow protocol. Paxson and Pang in [8]
introduce a way to anonymize the payload of a packet and
remove sensitive information instead of removing the entire
payload as the other approaches do. Packets are reconstructed
into data stream flows and application level parsers modify
the data streams as specified by a policy written in a high-
level language. The user can specify the field to be altered
using regular expressions and the modification to be done.
To the best of our knowledge, this work has not yet been
extended to Netflow protocol (currently only HTTP and FTP
are supported).

Concerning Netflow-specific work, we can identify several
approaches. Prefix-preserving anonymization has also been
applied to NetFlow [9]. The Crypto-PAn software has been
used and modified in order to generate the cryptographic key
that is used from a pass phrase. Anonymization is applied
only to IP addresses of flows, while all other fields are left
unchanged. The authors have extended their tool in [10] where
the users are able to anonymize the eight most common fields
of a NetFlow record.

NFDUMP [11] is a set of tools for collection and processing
of NetFlow data. Thenfdump tool among them reads NetFlow
log files stored by nfcapd and performs prefix-preserving
anonymization on them. It is worth noting thatnfdump uses
the Crypto-PAn module to perform this kind of anonymization,
and the key for the cryptographic algorithm is user-supplied.
A basic principle of the NFDUMP suite is the separation of
the storing process from analyzing the data. As a result, a lim-
itation of NFDUMP is the inability to perform anonymization
on live traffic (ie. NetFlow export records as sent by Cisco
routers etc.), since it can only process stored log files. The
current NFDUMP version is 1.5.2, currently offering support
for Cisco NetFlow versions 5, 7 and 9.

FLAIM [12](Framework for Log Anonymization and In-
formation Management) is a general framework, created to
support the anonymization of heterogeneous logs to multiple
levels. FLAIM was developed by the Log Anonymization
and Information Management (LAIM) Working Group [13]
to overcome the limitations of other tools, such as CANINE
[14], which could not be scripted from the command line,

and did not offer support of multiple types of logs. FLAIM
includes an anonymization engine containing a broad set
of anonymization algorithms for various datatypes, an XML
based policy engine which validates and parses users’ XML
policies against a variety of schemes and finally an API
governing how parsing modules can pass records back and
forth with FLAIM’s anonymization engine. At this time, the
FLAIM nfdump module supports anonymization of netflows
contained only in NFDUMP version 1.4.x logs and not 1.5.x
ones, due to changes in the internal NFDUMP format. As
a result, it does not support NetFlow version 9. FLAIM
provides several anonymization primitives to choose from,
such as prefix-preserving anonymization, random permutations
of field values and specialized operations on time-related
fields. FLAIM focuses on providing generality rather than
performace; we believe thatanontool can provide the same,
if not greater, degree of generality while also achieving the
maximum performance, similar to very specialized tools with
limited functionality, such as NFDUMP. The latest version of
FLAIM is 0.5.2.

Although the reader may be confused by our choice to deal
with log anonymizers while we present the implementation of
a packet trace anonymizer, these tools are currently the only
way of anonymizing NetFlow data, and therefore should be
considered in the context of NetFlow data anonymization. It
is up to the potential user to decide whether she would prefer
to store and manipulate packet traces or log files, yet we offer
our opinion on this matter in Section IV.

III. A NONTOOL

Anontool is command line tool that enables users to
anonymize both live and stored traffic. Its functionality is
based on the Anonymization API (AAPI), described thor-
oughly in [15]. AAPI allows a user to write his own
anonymization applications. User can define the anonymiza-
tion function to be applied on any field, having the maximum
degree of flexibility in defining her policies. AAPI providesa
large number of anonymization functions, from setting fields
to zero or constant values, prefix-preserving anonymization,
hashing with several different hash functions and block ci-
phers, including but not being limited to, SHA-1 and SHA-
2, MD5, CRC32, 3DES and so forth, mapping (direct and
probabilistic) and support for regular expression matching
and replacement. AAPI supports a wide variety of protocols,
ranging from Ethernet to HTTP and FTP in the application
layer. All fields of a protocol are being made available to the
user application.

AAPI is implemented as a user-level library in the C lan-
guage; it provides function calls for creating packet ”streams”,
filtering using BPF filters, and of course applying anonymiza-
tion functions. It useslibpcap [16] for packet capturing and
writing packet traces on disk. One of the main design goals
was to accomodate extensibility, and potential developersare
able to write their own protocol decoder in the framework,
similar to those already used for FTP, HTTP, or NetFlow
protocols, for a target protocol, such as SMTP for instance,

or new anonymization functions. It is also straight forward
to write code that supports new input sources, with few code
additions, and apply anonymization as usual using the same
notation and anonymization functions AAPI provides. The
implementation of AAPI is presented in much greater detail
in [15].

Since the emerging use of Netflow data, we decided to
extend AAPI with support of the Cisco NetFlow packet export
format. Taking advantage of the extensibility feature of AAPI
we implemented decoding and anonymization functions for
both version 5 and the newly defined version 9 of the Net-
Flow format. Table I shows all the fields and anonymization
primitives available regarding NetFlow v5. Bear in mind the
names of the functions are merely indicative, and most are
highly configurable with extra parameters.

Protocol Fields Functions

NETFLOW V5 VERSION UNCHANGED

NETFLOW V9 FLOWCOUNT MAP

UPTIME MAP DISTRIBUTION

UNIX SECS STRIP

UNIX NSECS RANDOM

SEQUENCE HASHED

ENGINE TYPE PATTERN FILL

ENGINE ID ZERO

SRCADDR REPLACE

DSTADDR PREFIX PRESERVING

NEXTHOP PREFIX PRESERVINGMAP

INPUT CHECKSUM ADJUST

OUTPUT REGEXP

DPKTS

DOCTETS

FIRST

LAST

SRCPORT

DSTPORT

TCP FLAGS

PROT

TOS

SRC AS

DST AS

SRC MASK

DST MASK

TABLE I
TABLE PRESENTS THENETFLOW FIELDS THAT AAPI MAKES AVAILABLE

FOR ANONYMIZATION AND THE FUNCTIONS WHICH CAN BE APPLIED ON

THEM.

Exploiting the template-based nature of the v9 format, it
provides the user with complete control of every field made
available from information export nodes, be it Cisco routers or

network monitoring applications which support the NetFlow
export format.

Anontool enables users to select the desired anonymization
function per field. It can read traffic either from a live interface
or from a tcpdump [4] trace file. The anonymized packets
can be written to disk, again in tcpdump format. The choice
of tcpdump format was made based on the popularity of the
format and the fact that can be given as input to many security
and network management applications. Other useful options
of anontool is that it can automatically fix checksums of
anonymized packets (the checksum will be changed once a
field of the packet is altered) and its ability to print packets
on screen – in human readable form – for manual inspection.
An example invocation ofanontool is the following:

./anontool -i eth0 -t ZERO -c /dev/null

The above invocation will open NIC named “eth0” for packet
capturing, will zero the TCP port numbers of NetFlow records
in the packets captured and recompute checksums, then write
each packet to/dev/null. Alternatively, a user could write:

./anontool -i eth0 -a PREFIX \
--NF5_TOS RANDOM -c 42.pcap

which would open the interface named “eth0” for capturing,
then in every NetFlow datagram captured it would perform
prefix-preserving anonymization on source and destinationIP
addresses and replace the value in the TOS field with a random
value, then recompute checksums before writing the packets
to a pcap file named42.pcap

Anontool is a fairly simple C application that uses the
AAPI library to support anonymization of packet traces. It
does not implement any anonymization functions in itself; it
is much more transparent to a user to put all the anonymization
functionality in the AAPI implementation which can be used
by any application. What it does do, however, is to provide
the user with the choice of protocols, functions to apply,
etc. in order to create her anonymization policy for a packet
trace. It is worth noting, that to maintain simplicity and not
overwhelm the user with a plethora of choices, we have not
added support for every primitive AAPI provides. Contrary,
we have provided a few preset policies which are commonly
used and can be selected by a single command line parameter,
and we are exploring the possibility of supporting predefined
policies which are stored in files in a general-purpose language
such as XML. For instance, a user can invoke a predefined
policy which will set IP source and destination addresses’
bits to zero, set the values of the TCP port field into new
random ones and replace the values of the Uptime field with
a random value, and finally generate new checksums for
the NetFlow datagrams before writing them to a file named
anon trace.pcap by invoking the tool as follows:

./anontool -i eth0 -d anon_trace.pcap

On the other hand, it is trivial for any user with knowledge of
the C language to add another command line option for the
function she desires to use.

IV. EVALUATION

A. Functionality Comparison

Before proceeding with the performance evaluation of the
available tools, we are going to briefly discuss the choices they
present to the user who wishes to perform anonymization on
NetFlow records using each of these tools.

Before we start, we feel it is essential to define what we
consider as “flexibility” in the context of the anonymiza-
tion process. As mentioned earlier in the paper, AAPI was
developed by having flexibility in mind. What this means,
is that we feel a potential user, who wishes to perform
anonymization on any kind of network data, should have the
potential to do so in any way she deems fit. As different
organizations and institutions as well as different groupsof
people like researchers or network engineers tend to have
different views and interests over network data, it is most
likely that they would wish to “hide” or obfuscate different
aspects of their owned network data traces or logs. Therefore,
providing them with the ability to do so, is a very important
factor an anonymization tool developer should bear in mind.
We therefore believe that the maximum degree of flexibility in
anonymization policy definitions is when the user has complete
control over what primitives she can use over all of the data.
This is ensured becauseanontool operates on the granularity
of protocol fields, and this is the most fine-grained choice a
user can have.

Moreover, we feel that supporting packet traces as a source
of network data is important, for two reasons. Firstly, the
information in packet traces is complete and does not bear any
information loss over logs. During our work with anonymiza-
tion tools we came along with log formats which, in order to
achieve storage and computation efficiency, discarded certain
packet contents; we feel this should not be imposed implicitly
on a user. Secondly, anonymized packet traces can be further
processed by tools meant for accounting, intrusion detection or
other tools such as NFDUMP which operate on packet traces,
without the need for another application that would reconstruct
a packet trace from logs. We feel that this is another factor
that gives a user the maximum degree of choice between all
the different protocol fields a packet may contain, and this
contributes to achieving maximum flexibility as defined in the
previous paragraph.

NFDUMP provides the user with the simplest and most
rigid anonymization policy of the three tools; prefix-preserving
anonymization of all the source and destination IP addresses
inside the log file. Remember that this is due to the integration
of the Crypto-PAn tool in thenfdump application. Regarding
the supported formats, NFDUMP handles the collection of
NetFlow export packets versions 5 and 7, as well as the newest
version 9. The log files it stores, however, are not in the packet
export format Cisco has defined. The single user-configurable
parameter in this setup is the choice of the key used for the
cryptographic algorithm which Crypto-PAn implements. While
it may prove useful for specialized applications, NFDUMP

offers no flexibility when a user wants to consider alternative
anonymization policies.

FLAIM offers support for NetFlow versions 5 and 7. Al-
though its modular nature should make adding support for
new protocols or log formats easy, at the moment of this
writing, it does not support NFDUMP version 1.5 logs, and
therefore cannot process NetFlow v9 records. Note that, when
it comes to NetFlow anonymization, FLAIM also operates on
NFDUMP log files, and not on the Cisco packet export format.
Nevertheless, FLAIM presents the user with choice between
all of the fields a NetFlow record contains. The user may
then choose the desired primitive to be applied on any field of
each record, through the use of XML-based documents which
describe her anonymization policy. FLAIM has a wide variety
of anonymization primitives for the user to choose; wiping
field values clean (Black Marker primitive), truncating fields,
several types of permutation of a field, hashing, partitioning
and a specialized partitioning for time-based fields calledTime
Unit Annihilation, and enumeration. While a lot in themselves,
FLAIM imposes certain restrictions on the algorithms a user
can select to apply on each field. For instance, only the
BinaryBlackMarker and Annihilation primitives are valid to
apply on the Packets field of a NetFlow structure. It is worth
noting, the FLAIM user can change the module schema in
order to lift those restrictions, but at the same time she is
advised not to do so. We feel only experienced users with
FLAIM and XML would be able to perform such changes;
such assumptions about a user or anonymization policies
should, in our opinion, be avoided. Although it may not seem
important, it should essentially be up to the user to decide the
optimal anonymization policy to apply in each case, which
could certainly vary from sharing of network activity logs,to
obfuscating certain parameters of the network which could be
inferred from the log, if not anonymized properly.

CANINE supports different kinds of NetFlow formats.
Among them, the NetFlow v5 and v7, the NFDUMP for-
mat, and two NCSA internal formats derived from them.
It can anonymize IP addresses, port and protocol numbers,
timestamps and the byte counter on each flow record. The
algorithms supported on each field resemble closely the ones
used by FLAIM; truncation, random permutations, and prefix-
preserving anonymization. For the timestamp, it can annihilate
certain parts of it, perform random time shifts, or perform
an enumeration. There’s also a bilateral classification algo-
rithm available for port numbers. Unfortunately, CANINE
was considered non-extensible and difficult to script from the
command line, so its developers proceeded with the definition
and implementation of FLAIM. Due to these factors, but also
because FLAIM is a later tool which addresses these difficul-
ties, we will also not consider CANINE in our performance
comparison, as it was indeed quite difficult to evaluate its
behavior.

Anontool preserves the basic principle of AAPI, which is
bent on being generic and flexible. It offers support for Net-
Flow version 5, which is the most used version supported on
routers, and NetFlow version 9, the latest addition to the series,

which has an extensible design and is currently the IETF
standard for information export. We chose not to implement
support for NetFlow v7, because its a specialized enhancement
which is incompatible with the majority of Cisco routers,
and therefore not quite popular. As an application based on
AAPI, the anontool user has complete control over every field
which may be present in a NetFlow packet. We have already
mentioned in Section III the available choices of fields a user
has, and there are no restrictions regarding the operations
which a user may apply on them. Regarding the anonymization
operations a user can apply, anontool offers a wide variety of
primitives to choose from. Starting with the simplest deletion
of a field value, or setting it to a fixed value, a user can also
choose mapping a field’s values to new ones, which may or
may not follow a probability distribution, she can strip certain
parts of a field, or replace them with a specified value (binary
or string). The popular prefix-preserving algorithms are also
supported, and so are various hash functions, cryptographic
and not. Also, the user can set fields according to a pattern,
and specify regular expressions to match and change a part or
whole of a field. This last feature is particularly useful when a
user would want to eliminate potentially sensitive information
which could appear on the packets of an HTTP transaction,
such as part of a URL being requested by a browser.

At this point, we believe that having discussed the ca-
pabilities of each tool, anontool presents a user with the
maximum amount of flexibility, offering complete control
over the NetFlow packet export structure. FLAIM also offers
a significant amount of choices to the user, yet it places
restrictions which a user may find limiting. NFDUMP offers
the least capabilities of the three tools. Also, we argue that
since anontool operates on packets using libpcap, its output
can be used as input to other tools for network management,
monitoring, or accounting, and thus it can be used in conjunc-
tion with other tools, including FLAIM and NFDUMP. This
is not the case with the NFDUMP log format, unless there are
specialized converters which perform this task. Yet the process
of conversion takes time and makes the whole process tedious
and prone to error.

B. Performance comparison

Recently, NetFlow data are used for security purposes
and anomaly detection([17]–[19]). In the field of computer
security, high performance and timely responses to threatsare
of paramount importance. Therefore, if anonymized network
flow data are to be used and shared for security purposes,
we should explore how fast the anonymization process can be
completed.

In this section, we present performance evaluation of the
available tools, described in Section II. In order to perform the
performance evaluation we used a real traffic trace collected
from a monitoring sensor located at the University of Crete.
The trace was collected from 26/03/2007 morning through
27/03/2007 afternoon and contains 7328264 flows presenting
total traffic of 94.1 GB. The trace itself was 857 MB large.

To perform our evaluation, we used the most recent versions
of the tools available;1.0 for anontool,1.5.2 for NFDUMP,
and 0.5.2 for FLAIM. All the figures we present are means
taken out of 20 iterations.

Since both NFDUMP and FLAIM require the collection of
NetFlow data from the network before the actual anonymiza-
tion process can take place, we used the nfcapd daemon,
supplied with the NFDUMP tools, to convert the trace into the
NFDUMP format and calculated the sum of user and system
time needed for the conversion in the total time needed for the
trace anonymization. As this collection/conversion process is
required for log processing by the aforementioned tools, we
feel this extra cost should be taken into consideration, as the
result is a very close approximation of a “direct” comparison.

In this point we would like to argue, once more, that sharing
network level traces is more useful than sharing logs, since
the user can use the traces for several purposes; i.e. she
can translate the trace into flows in the format that is more
suitable for the analysis she wants to perform, or she can use
the anonymized network trace in order to evaluate NetFlow
collection or translation tools.

In our first experiment we choose to follow the NFDUMP
anonymization policy, which we implement both with AAPI
and FLAIM. NFDUMP deploys prefix preserving anonymiza-
tion only in the flow source and destination IP addresses.
The results are presented in Table II. As we can see the
performance of our implementation and NFDUMP is similar
but our tool has the ability of deploying anonymization in
all fields of the Netflow implementation. FLAIM presents 5
times worse performance, which are attributed to high memory
consumption which led to excessive swapping operations (as
indicated byvmstat tool). This performance problem appears
in FLAIM’s current release (0.5.2) at the time of this writing
as well as in the previous release we tested (0.5.1).

Tool User + System Time (secs) CPU Load (%)

anontool 233.76 94.2

NFdump 232.35 94.6

FLAIM 1237.33 86.9

TABLE II
COMPARISON WHILE DEPLOYINGPREFIX PRESERVINGIP ADDRESS

ANONYMIZATION

In our second experiment we choose to implement a differ-
ent anonymization policy. We zero both source and destination
IP addresses in all Netflow records. Since NFdump has a single
anonymization policy we can compare only with FLAIM. As
the results from Table III indicate, our implementation is again
one order of magnitude faster than FLAIM and also requires
half the CPU utilization that FLAIM does. This shows that our
tool would be able to anonymize Network Flow data on the fly
without any loss even in high bandwidth rates (the 20 seconds
needed by anontool are translated to 350 Mbps throughput),

while other tools would require first to capture the data and
then follow the anonymization procedure.

Tool User + System Time (secs) CPU Load (%)

anontool 19.76 46.80

FLAIM 1168.8 99.9

TABLE III
COMPARISON WHILE DEPLOYINGZERO IPANONYMIZATION

Finally, we measured the time it took anontool and FLAIM
to execute the predefined anonymization policy we saw at
the end of Section III. This policy instructs that source and
destination IP addresses are set to zero, the TCP port fields
are set to a random value and the Uptime field is also set to
a random value. The results appear in table IV.

Tool User + System Time (secs) CPU Load (%)

anontool 36.58 36.48

FLAIM 1336.01 94.9

TABLE IV
COMPARISON WHILE DEPLOYING A PREDEFINED ANONYMIZATION

POLICY WITH MULTIPLE FUNCTIONS(ZERO SOURCE AND DESTINATIONIP
ADDRESSES, RANDOM TCPPORT NUMBERS AND RANDOMUPTIME)

V. SUMMARY AND CONCLUDING REMARKS

We have presentedanontool, a tool which provides
anonymization capabilities for both stored and live traffic.
Anontool is implemented using AAPI, a powerful and flexible
anonymization API, and shows that it is possible to provide
the means for developers, researchers, and network engineers
to anonymize NetFlow data in an efficient and highly cus-
tomizable manner. We compared it to other tools which were
developed for the same purpose along two major axes. The first
one was functionality. Anontool provides the widest range of
anonymization functions that can be applied to all fields of
the Netflow protocol while other tools offer a limited number
of functions on a few fields. Furthermore, anontool can work
directly on live traffic and uses widely-used format for input
and output. The second axis was performance. We have found
that anontool outperforms similar frameworks, like FLAIM,
and has the same performance as very specialized approaches,
like NFDUMP, without having to sacrifice flexibility in the
anonymization policies a user could define.

VI. AVAILABILITY

Anontool can be downloaded from http://dcs.ics.forth.gr/
Activities/Projects/anontool.html. The application hasbeen
installed and tested to Redhat and Debian operating systems.

REFERENCES

[1] Cisco Systems, Inc, “Netflow Specification.” [Online]. Available:
http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml

[2] “Ip flow information export (ipfix).” [Online]. Available: http:
//www.ietf.org/html.charters/ipfix-charter.html

[3] Greg Minshall, “Tcpdpriv.” [Online]. Available: http://ita.ee.lbl.gov/
html/contrib/tcpdpriv.html

[4] “Tcpdump/libpcap official site.” [Online]. Available: http://www.
tcpdump.org

[5] M. Peuhkuri, “A method to compress and anonymize packet traces,”In-
ternet Measurement Workshop (San Francisco, California, USA: 2001),
pp. 257–261, 2001.

[6] J. Xu, J. Fan, M. Ammar, and S. B. Moon, “On the design
and performance of prefix-preserving ip traffic trace anonymization,”
Internet Measurement Workshop (San Francisco, CA, USA: 2001), pp.
263–266, 2001. [Online]. Available: citeseer.nj.nec.com/462352.html

[7] J. Xu, J. Fan, M. Ammar, and S. Moon, “Prefix-preserving ipad-
dress anonymization: Measurement-based security evaluation and a new
cryptography-based scheme,”ICNP 2002, 2002.

[8] R. Pang and V. Paxson, “A High-Level Programming Environment for
Packet Trace Anonymization and Transformation,” inProceedings of the
ACM SIGCOMM Conference, August 2003.

[9] J. W. A. Slagell and W. Yurcik, “Network log anonymization: Applica-
tion of crypto-pan to cisco netflows,”NSF/AFRL Workshop on Secure
Knowledge Management (SKM), 2004.

[10] A. Slagell, Y. Li, and K. Luo, “Sharing network logs for computer
forensics: A new tool for the anonymization of netflow records,”
Computer Network Forensics Research (CNFR) Workshop, 2005.

[11] “Nfdump tools collection.” [Online]. Available: http://nfdump.
sourceforge.net/

[12] A. J. Slagell, K. Lakkaraju, and K. Luo, “Flaim: A multi-level
anonymization framework for computer and network logs.” inLISA,
2006, pp. 63–77.

[13] “Log anonymization and information management working group.”
[Online]. Available: http://laim.ncsa.uiuc.edu/

[14] Y. Li, A. Slagell, K. Luo, and W. Yurcik, “Canine: A combined
converter and anonymizer tool for processing netflows for security,”
in Proceedings of the International Conference on Telecommunication
Systems - Modeling and Analysis (ICTSM), Nov. 2005.

[15] D. Koukis, S. Antonatos, D. Antoniades, P. Trimintzios, and
E. Markatos, “A generic anonymization framework for network traffic,”
in Proceedings of the IEEE International Conference on Communica-
tions (ICC 2006), Jun. 2006.

[16] S. McCanne, C. Leres, and V. Jacobson, “libpcap,” lawrence Berkeley
Laboratory, Berkeley, CA. [Online]. Available: http://www.tcpdump.org/

[17] A. Lakhina, M. Crovella, and C. Diot, “Characterization of network-
wide anomalies in traffic flows,” 2004. [Online]. Available:citeseer.ist.
psu.edu/715839.html

[18] T. T.Dbendorfer, A.Wagner and B.Plattner, “Flow-level traffic analysis
of teh blaster and sobig worm outbreaks in an internet backbone,” in
Proceedings of DIMVA 2005, Springer’s Lecture Notes in Computer
Science, 2005.

[19] P. Barford and D. Plonka, “Characteristics of network traffic
flow anomalies,” 2001. [Online]. Available: citeseer.ist.psu.edu/
barford01characteristics.html

