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ABSTRACT
Smartphone sensors can be leveraged by malicious apps for a
plethora of different attacks, which can also be deployed by ma-
licious websites through the HTML5 WebAPI. In this paper we
provide a comprehensive evaluation of the multifaceted threat that
mobile web browsing poses to users, by conducting a large-scale
study of mobile-specific HTML5 WebAPI calls used in the wild. We
build a novel testing infrastructure consisting of actual smartphones
on top of a dynamic Android app analysis framework, allowing
us to conduct an end-to-end exploration. Our study reveals the
extent to which websites are actively leveraging the WebAPI for
collecting sensor data, with 2.89% of websites accessing at least
one mobile sensor. To provide a comprehensive assessment of the
potential risks of this emerging practice, we create a taxonomy of
sensor-based attacks from prior studies, and present an in-depth
analysis by framing our collected data within that taxonomy. We
find that 1.63% of websites could carry out at least one of those
attacks. Our findings emphasize the need for a standardized policy
across browsers and the ability for users to control what sensor
data each website can access.
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1 INTRODUCTION
Smartphones have become almost ubiquitous, with the volume of
Internet traffic from mobile devices surpassing that of desktop com-
puters worldwide [35], while 56% of the traffic to top-sites in the
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US was from mobile devices [65]. Apart from the obvious usability
benefits smartphones offer, they have also introduced a plethora
of risks. Users are becoming increasingly aware of privacy issues
including online tracking and internet surveillance, and employ
private browsing among other techniques to remain anonymous
online [70, 71]. However, adversaries can still track users through
fingerprints [53], making it possible to identify which device is nav-
igating a given webpage [42]. Prior work has also shown that im-
perfections in sensors’ hardware render them fingerprintable [25].
Websites can access such mobile sensor data through the widely
supported HTML5 WebAPI. Thus, a plethora of attacks that were
previously limited to mobile apps can “migrate” to the mobile web,
as modern browsers provide access to a device’s sensors.

In this paper we present a quantitative and qualitative large-
scale study of mobile-specific WebAPI calls made by websites in the
wild. We build a unique crawling infrastructure that uses Android
devices and perform an end-to-end analysis of WebAPI requests.
Using our crawling infrastructure, we measure the prevalence of
mobile-specific WebAPI calls across 183,571 of the most popular
websites during March-November 2018. Our experiments capture
the true scale of this phenomenon, as we detect 5,313 unique do-
mains accessing at least one mobile WebAPI call; 35.89% of those
also result in sensors being accessed by third-party scripts. To better
understand the implications we survey prior literature on attacks
from malicious apps that leverage data from mobile sensors. Based
on this diverse yet representative selection of papers we create a
taxonomy of attacks that could be potentially carried out by mod-
ern websites and conduct an in-depth analysis of our dataset. We
argue that with browsers enforcing different access policies, as do
the plethora of apps that support WebView, there is dire need for a
standardized, fine-grained universal mechanism that allows users
to control access to all types of mobile sensor data.

Overall, this paper makes the following contributions:
• We build a novel crawling infrastructure and conduct a high-
fidelity, large-scale end-to-end study of websites targeting
mobile-specific sensors.
• We provide a taxonomy of previously reported sensor-based
attacks and reframe them within the modern mobile ecosys-
tem. Guided by our taxonomy we conduct a qualitative anal-
ysis of our collected data and a provide a comprehensive
assessment of the threat posed by the mobile WebAPI.
• Wepublicly release our data: https://www.cs.uic.edu/~webapi.
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Figure 1: Taxonomy of attacks demonstrated in prior studies that leverage data from mobile sensors.

2 BACKGROUND
Attack Taxonomy. A plethora of research papers have demon-
strated mobile-based attacks that employ sensor data. While a con-
siderable number of attacks present similar characteristics, e.g.,
demonstrating different techniques for inferring a user’s touch-
screen input or fingerprinting the user’s device, a wide range of
different attacks have been proposed. Here we introduce a taxon-
omy of attacks compiled from the literature that captures the vast
potential of how mobile sensor data can be misused by adversaries.
Typically these attacks assume that attackers are able to obtain sen-
sor data through a malicious app installed on the device. However,
in practice, modern browsers can mediate data exchange between
websites and sensor data through the HTML5 WebAPI. This leads
to a different threat model and an increased attack surface, as it
removes the constraint of users having to install a malicious app.

In Figure 1 we present our taxonomy which aims to highlight
the variety of attacks enabled by sensor-data, while simultaneously
obscuring the type of sensor used for each attack. We do not include
explicit sensor information in our taxonomy, as prior attacks often
obtain the same objective while using different combinations of
sensors (as can be seen in Table 1). At the same time we opt for a
relatively fine-grained first level, and specifically consider acoustic
attacks as a separate class due to their unique and diverse nature,
instead of including them as sub-classes of physical and digital
activity inference attacks. Next we describe the 4 main classes from
our taxonomy’s first level and refer to some of the presented attacks.

Physical activity inference. Numerous studies [27, 36, 38, 46, 52,
58] have demonstrated that mobile sensors can be used to infer
information about personal everyday activities. For example it is
possible to infer whether the user is walking, running or their mode
of transportation, by leveraging the Motion and GPS sensors [58].

Acoustic attacks. [11, 24, 32, 33, 44, 45, 47, 62] showed that access
to Motion, Orientation or the Vibration API can be used to infer
users’ credit card numbers by listening for specific frequencies [62]
or what a user is typing on the keyboard [45], and bypassing dy-
namic analysis and antivirus through covert channel attacks [44].

Digital activity inference. This class includes a wide range of at-
tacks, with prior work [14, 16, 17, 30, 37, 46, 56, 64, 72] showing that
sensor information (including the Accelerometer and Gyroscope)
can be used to predict what the user is typing on the smartphone’s
touchscreen(e.g., [46, 56]). This is possible because typing leads
to changes in the position of the screen, its orientation and the
device’s motion. In a different study, the Light sensor was used to

identify the content of an external display and even classify users’
digital activities into different categories with an 85% accuracy [17].

User tracking. User tracking has garnered much attention [9,
10, 15, 20–23, 25, 30, 36, 39, 40, 47, 52, 58, 59, 73, 74], and can be
conducted in different ways – from coarse-grained location tracking
that does not require any user-permission (using the Accelerometer
or Gyroscope) [36, 52], to fine-grained device fingerprinting using
rich and high-resolution data from smartphone sensors(e.g., [10,
25]). In this category we also include alternative attacks that could
track users by inferring demographic information (e.g., age [23],
gender [47] and fingerprints [30]), physical traits such as their
gait [40, 59], or information about their mental state or mood [74].

Deconstructing sensor attacks. Table 1 lists the attacks de-
scribed in the studies that guided our taxonomy. We classify previ-
ous attack papers based on the taxonomy introduced in Figure 1.
Subsequently, we break down all the attacks presented in those
papers based on the type of sensor data needed to carry out the
attacks. For example [58] infers the body movement or activity
of a user by accessing the motion and GPS sensors. On the other
hand, [52] only requires the orientation sensor, but using the Mo-
tion or Magnetometer sensor can further improve the attack.

3 METHODOLOGY AND SYSTEM DESIGN
In this section we present our system design and experimental
methodology.We give an overview of our system’s architecture, and
provide implementation details about the in-line hooking methods.

System architecture. Our system employs a proxy server that
intercepts network traffic by using mitmproxy [18]. We configured
all the Android devices used in our experiments with mitm’s certifi-
cate in order to intercept both HTTP and HTTPS traffic. The proxy
server injects a JavaScript component that hooks and monitors
JavaScript calls to mobile-specific WebAPIs. However, our aim is to
obtain an in-depth view of sensor data access. In general, browsers
are responsible for mediating access between high-level JavaScript
function calls and low-level Android API calls. Understanding how
this mechanism works for every browser would be time consuming
and in many cases infeasible due to proprietary code. As such, we
have opted for a generic and browser-agnostic approach, where we
intercept Android system calls using a custom Xposed [60] module
that (i) detects and hooks requests to sensor-specific Android API
calls and (ii) identifies which of these API calls are permission-
protected. By intercepting these low-level function calls we are able



Table 1: Sensor based side-channel attacks.
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Location Tracking
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[36]  - - - - - - -

[52] #  - - # - - -

[45] Acoustic emanation
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 - - - - - - -

[32, 33] - - - - - -  -

[47] Speech recognition
-  - - - - - -

[11] G G - - - - - -

[16, 37, 46, 72]
Touchscreen

input

G G - - - - - -

[56]  - - - - - - -

[64] - -  - - - - -

[30] - - - - -  - -

[14] OS/app fingerprinting - - - -  - - -

[17] Screen inference - -  - - - - -

[23, 59, 74] Physical
or
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 - - - - - - -

[47] -  - - - - - -

[30] - - - - -  - -

[40] G G - - - - - -

[21, 22, 39]

Device/sensor
fingerprinting

G G - - - - - -

[15]  - - - - -  -

[10]  ,G  - - - G - -

[25]  - - - - - - -

[20, 73] - - - - - -  -

[9] G G - - G - G -

[44] Covert
communication
side-channels

- - -  - - - -

[62] - - - - - -  -

[24] G - - G - - - -

Sensors marked with ( ) are sufficient for performing the specific attack. When a combination of multiple sensors is required to perform the
attack, they are marked with (G). We denote optional sensors that enhances the accuracy of the attack with (#). Grey columns denote sensor
data that should require explicit user permission according to the W3C.

to validate that the JavaScript interception was successful and calls
requesting sensor data were correctly logged.

Mobile HTML5 Functions. We identified the functions that
retrieve mobile-specific data through the official mobile HTML5

WebAPI [31].We consider as mobile-specific any calls that obtain in-
formation originating from an integrated sensor of a mobile device.
The HTML5 WebAPI calls interact with the webpage using either a
direct one-time communication (i.e., Vibration and Media capture)



or through an event listener, since some sensors (i.e., Motion, Ori-
entation, Proximity, and Ambient Light) continuously fire events in
order to provide up-to-date readings in real time. For Geolocation
one call exists for each category.

JavaScript Calls Interception. We build our component for
hooking JavaScript methods upon the javascript-hookerNode.js
module [13]. In our experiments we do not overwrite the original
function but only need to identify whether a function is called. Thus,
whenever a WebAPI is called the JavaScript modules creates a log
entry for further analysis and executes the original function. Since
javascript-hooker also takes the arguments of the original func-
tion, we can also intercept the arguments of the addEventListener
and check for events of interest. Our code is injected in the head of
the document (if there is one) or the page body otherwise.

In order to listen to events and associate a function to a specific
target we need to intercept the setter property. Even though this is
possible using Object.defineProperty() the original value will
be lost and the webpage may not function as expected. Therefore,
we follow the approach employed by Chameleon [34] and over-
write the getter property of each event prototype. As such, every
time the property is read, our custom function is called. While
certain sensor data may normally remain the same during naviga-
tion (e.g., properties related to display characteristics), remaining
constant might be considered “suspicious” for other sensors. For
instance, when an actual human uses the device, small changes in
the gyroscope readings would be expected. As such, to make our
crawling more realistic, our system intercepts the values returned
by certain sensors and slightly modifies their value. In general, data
retrieved through events, is handled in two different ways: listening
to addEventListener on the target object while checking if the
argument matches the desired event and defining new getters for
the properties of the event’s prototype.

Identifying the JavaScript source. Apart from logging We-
bAPI calls we also want to identify the origin of the JavaScript files
being executed. This information is important in order to identify
if the script belongs to a first-party domain or a third-party domain.
We register the source of the URL by utilizing the stack property
of the Error object. Our hooking script implements a mechanism
that creates an Error object and reads its stack property.

Android API call interception. Each mobile HTML5 WebAPI
is associated with a low-level Android API call. In order to validate
the results of the JavaScript interception and to identify which ones
require a permission, we use the PermissionHarvester [26] module
that hooks every Android permission protected API call. Since ac-
cess to some of the sensors does not require an Android permission,
we also manually identified and hooked the functions that give ac-
cess to non-permission-protected sensor data. Android apps (includ-
ing the browser) cannot directly read the current value of a sensor
and are required to register a listener in order to consequently read
the captured events. Each sensor can be obtained by declaring a lis-
tener and specifying its name with the getDefaultSensor() func-
tion. Then, the listener is registered using the registerListener()
method. Our module intercepts both of these function calls.

Experimental setup. In our experiments we use Mozilla Fire-
fox (v.59.0.1) as our browser on three Android Google Nexus 5X
and a OnePlus One device, all running AOSP 7.1.2. We controlled
the devices using the Android Debug Bridge. We first evaluated

Table 2: Number of domains using mobile WebAPIs calls.

WebAPI #Domains WebAPI #Domains

Device orientation 2,199 Ambient light sensor 152
Geolocation 1,688 Proximity sensor 142
Device motion 1,360 Vibration 84
Screen orientation change 645 Media capture 12

Total 6,282

the effectiveness of our methodology by creating a dummy website
that executes all possible mobile HTML5 WebAPIs. Since browsers
require a valid certificate in order to call certain APIs we used a
self-signed certificate and confirmed that our approach can suc-
cessfully intercept and monitor access to the devices’ sensors. Our
system also simulates brief user interaction through random ges-
tures which are issued for approximately 30 seconds on average for
each website, while an extra module monitors for potential redi-
rections to different domains which are rolled back so the original
website can continue to be processed.

4 DATA COLLECTION AND ANALYSIS
Our crawling list included the 200K most popular websites accord-
ing to Alexa, as returned on 03/24/2018. Our system was unable
to access or complete the crawling process for 16,199 (8%) of the
domains in our list (e.g., 503-timeout, 502-Bad Gateway, or DNS
errors), and omitted 230 domains flagged as malicious by the Google
SafeBrowsing API. Our crawling experiments took place between
03/24/2018-09/03/2018 and 11/11/2018-11/22/2018, from US-based
IP addresses.

In Table 2 we can see the prevalence of the mobile-specific We-
bAPI calls logged by our system among the 183,571 domains pro-
cessed by our crawling infrastructure. We logged 5,313 (2.89%)
websites using at least one of the targeted APIs, while 807 request
access to sensor data using more than one of the API calls. The most
prevalently accessed data is from the acceleration and orientation
sensors which do not require the user’s permission, as well as geolo-
cation data which requires permission in major browsers. While the
Geolocation API can also return information for desktop computers
(using “information about nearby wireless access points and the IP
address” [4]), we consider it mobile-specific due to smartphones’
integrated GPS receivers which provide real-time location infor-
mation. While geolocating users based on landline IP addresses
is considerably accurate [68], that is not the case for mobile IP
addresses [12, 66]. It is important to note that the Media capture
and Geolocation APIs should explicitly request permissions from
the user; while this is enforced in major browsers, it is not always
the case with other browsers (e.g., for Geolocation [41]). For the re-
maining WebAPI calls, users will be unaware that such information
is being retrieved by the website even for major browsers.

As Figure 2 shows the use of mobile-specific WebAPI calls is not
uniform across our dataset. The highest concentration is found in
the top 5K websites with 250 domains. We observe that domains
also access more permission-freeWebAPIs (gray bars) independently
of their rank, indicating the importance of this sensor data. This
type of information can be used for a plethora of attacks, and users
should have the ability to explicitly grant permission for them.
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Figure 2: Number of domains using mobile WebAPI calls.
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Table 3: Breakdown of sensor based attacks and the number
of domains capable of deploying them.

ID Mobile Sensor-based Attack #Domains

1 Mode of transportation 2,861
2 Body movement or activity 720
3 Location tracking 2,861
4 Acoustic emanation side-channels 1,372
5 Speech recognition 2,199
6 Touchscreen input 1,425
7 Screen content inference 152
8 Inferring user’s age 1,360
9 Inferring user’s sex 2,199
10 Inferring user’s fingerprints 12
11 Inferring user’s gait 1,360
12 Inferring user’s mood 1,360
13 Device/sensor fingerprinting 2,873
14 Covert channels 96

As Figure 3 (left) shows the majority of websites issue request
access to a single sensor through the WebAPI, while 15.1% of the
domains we processed target at least two different types of sensor
data. As shown in Table 1, only accessing the Motion sensor can
lead to six different attacks, while a combination of two sensors
(Motion and Orientation) leads to eight attacks. Furthermore, as
can be seen in Figure 3 (right) 56.6% of the domains that issue
mobile-specific WebAPI calls are able to perform at least one attack.

Sensor-based attacks.We continue our analysis by framing our
dataset within our taxonomy based on representative prior work. It
is important to note that in our analysis we do not take into account
or argue for (or against) the plausibility of the attacks presented in
previous studies. Instead, our goal is to measure the potential risk
that mobile users face due to web browsing by identifying websites
that request access to specific sensor data and could potentially
misuse them in an invasive or malicious manner.

Table 3 breaks down the number of domains for each attack.
We observe that the most common attacks across websites that
access WebAPIs are device/sensor fingerprinting and trait, mood

or demographic inference (54.07%), location tracking and mode
of transportation (53.84%), speech recognition (41.38%) and touch-
screen input (26.82%). We argue that any information gained from
sensors poses a risk for users and an access control policy should
be enforced, either through some form of run-time permissions [5]
or using a mechanism similar to GDPR [3].

Banking sites.While fingerprinting allows third parties to track
users across the Web [53], fingerprints can be used as an additional
factor for authentication [8]. As such, banking websites are well-
suited for deploying such a security mechanism [54] due to the
significant implications of compromised accounts. As details of
such practices are not typically disclosed, we further explore the
prevalence of sensor-based information access across e-banking
domains. We compiled a list of bank domains using [1, 6] and cross-
referenced it with our dataset. We identified 65 banking domains
that request access to at least one mobile sensor. Banking domains
request access for 1.38 sensors on average, which is higher than the
average of 1.17 in other domains, indicating that they aremore likely
to leverage the HTML5 WebAPI for accessing sensor data. We find
that 24 of the domains obtain access to the sensor data necessary
to conduct at least one of the attacks included in our taxonomy.
Interestingly, all of those banks collect the sensor data leveraged in
prior work for device fingerprinting, while 40 banks request access
to the user’s geolocation which can also be used for enhancing the
authentication process [8]. We find that efirstbank.com actually
requests access to more sensors than any other domain in our entire
dataset. Overall, while accessing sensor data could be motivated by
enhancing the authentication process, this practice raises privacy
concerns as argued by privacy advocates [48].

Request origin. Next we explore the origin of WebAPI requests
(first or third party) and whether it was included in an iframe.
Different browsers implement different policies regarding which
sensors can be accessed for these three different types of origin. We
present statistics for all the websites that requested access, even if
those requests were blocked by Firefox during our experiments.

Iframes. Our system collects all the calls executed by every el-
ement of a website, including iframes. In every log we record the
source domain name of the element that is accessing sensor infor-
mation. By comparing the URL of the address bar and the URL in
the logfiles, we can identify whether WebAPIs are accessed by the
DOM or by an iframe. Our analysis shows that 991 websites out of
5,313 contain iframes that use WebAPIs to access mobile specific
information. We analyzed all iframes from our experiments and
found that specific iframes are found in different websites. The
two most frequent domains injected inside iframes exist in 389
webpages (or 39.3% of pages with iframes collecting data) and are
related to online media players.

External sources. Among the websites that issue API calls for mo-
bile specific information we found 40 scripts from external domains
(either as a third-party scripts or inside an iframe) that collect data
from 2461 websites 46.3%. We manually analyzed these scripts and
found that they offer services for media-players and advertisements
and they collect information about the orientation and motion of
the device. In Table 4 we list the domains that appear in more than
50 websites and collect data from sensors. The first column is the
origin of the script being executed. The second and third column
show how many websites and iframes host this script. Given that



these third-party domains are used in 35.89% of websites that access
sensor data, we classified them based on the type of service they
provide using Cyren. The last two columns show which sensors the
script accessed and their corresponding attacks. We observe that
most of these domains call the motion and orientation WebAPIs
which enable a plethora of attacks. Moreover, domains classified as
search engines and ad-networks gain access to characteristics that
can track users across the web.

From Table 4 we can see that the domain api.b2c.com enables 12
different attacks. After investigating this domain through VirusTo-
tal [7] we found that scripts served from this domain and Android
apps that communicate with it are classified as intrusive adware
and even malware by some antivirus vendors. Another domain,
c.adsco.re, is flagged as malware by Cyren, even though it is not
considered malicious by the Google SafeBrowsing API. We manu-
ally analyzed the content of the script that retrieves the data and
found that apart from retrieving information about the Motion
and the Orientation sensors it also exhibits behavior which is a
strong indicator of device fingerprinting, such as creating and ma-
nipulating canvas elements [50] and reading different Navigator,
Screen, Storage and Window properties. Interestingly the adsco.re
domain states that it is used for traffic validation by Adscore, a bot
detection service. In total, these two domains which are considered
malicious by certain security lists, were found on 5.4% of all the
sensor-accessing domains logged by our system, which again raises
concerns regarding browser policies that allow third party domains
to access sensor data without explicit user permission.

Android internals. Our crawling system allows an end-to-end
analysis of sensor data access. Apart from providing high call-
detection fidelity, since we can match requests logged by our in-
jected JavaScript to actions at the operating system level, it also
revealed sub-optimal browser behavior. We found that while Fire-
fox prevents iframes from accessing sensor data, in practice Firefox
simply “omits” returning the sensor data instead of blocking (i.e.,
ignoring) the actual request. Specifically, Firefox allows iframes to
create event listeners, which then trigger the necessary WebAPI
calls which then trigger the corresponding Android-level process-
ing and permission checks for obtaining the sensor data; the data
is then returned to the browser but not provided to the iframe.

Malicious domains. Even though our system checked Google’s
SafeBrowsing API before visiting a domain, it is possible that vis-
ited domains could be flagged as malicious later on, or by different
blacklists. As such, we submitted all the domains that issued We-
bAPI requests to VirusTotal. Figure 4 presents the websites flagged
as malicious (sorted by their rank), the number of accessed sen-
sors per website and feasible attacks. Out of those, 149 domains
were flagged by one AV engine and 17 domains were flagged by
two. We can see that higher ranking malicious domains are more
likely to access more sensors which results in a higher number of
feasible attacks. We found 11 websites being flagged by at least
3 AV engines. Finally, we found two websites, namely goggle.com
and yotube.com, that are flagged by eight AV engines as malicious.
Apart from likely examples of typosquatting [49, 69], these websites
requested access to sensor data that could be used to perform one
and eleven different attacks respectively.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 20  40  60  80  100  120  140  160

Sensor Feasible attack

 0

 2

 4

 6

 8

 10

 12

vsegda-plys.ru

tvsinpagar.com

pirateiro.com

juba-get.com

poopeegirls.com

goggle.com

yotube.com

lab...central.com.br

5igb.com

80lou.com

seedoff.cc

VirusTotal flagged websites

6
3 4 3

4 8

8

3 3 3 3

6

3 4 3

4 8

8

3 3 3 3

Figure 4: Number of accessed sensors and feasible attacks
for websites flagged as malicious (top). Websites that were
flagged by at least three AV engines (bottom) – the number
on the bars showshowmanyAVenginesflagged the domain.

Table 4: Third-party scripts accessing WebAPI calls.

Script origin #Sites iframes Sensors AttackID
f.vimeocdn.com 275 275 O 1, 3, 5, 9
fast.wistia.com 467 3 OC -
fast.wistia.net 125 115 OC -
c.adsco.re 211 - M,O 1-6, 8, 9, 11-13
g.alicdn.com 170 65 O,G 1, 3, 5, 9
aeu.alicdn.com 127 83 O 1, 3, 5, 9
api.b2c.com 76 - M,O,P,L 1-9, 11-13
cdn.admixer.net 169 - M 1, 3, 4, 6, 8, 11-13
static.yieldmo.com 107 - O 1, 3, 5, 9
secure-ds.serving-sys.com 51 35 M 1, 3, 4, 6, 8, 11-13
dlswbr.baidu.com 77 69 M 1, 3, 4, 6, 8, 11-13
client.perimeterx.net 73 - M 1, 3, 4, 6, 8, 11-13
M: motion, G: geolocation, P: proximity, O: orientation, L: light, OC: orientation_change

WebView usage is extremely widespread [51], so we tested three
popular WebView-based browsers, namely Dolphin, UC, and Web-
View (info.android1.webview), along with Facebook and Messenger,
and found that they all allow iframes to obtain motion and orienta-
tion data. As such, even if users use Firefox or Chrome for browsing,
which currently block iframes from accessing sensor data, clicking
a link within such popular apps can expose them to attacks.

Transience of web measurements. Scheitle et al. [61] found
significant fluctuation in the websites contained in ranking lists
used by academic studies, with Alexa being the most volatile list.
As a result, similar measurement experiments that use an Alexa
list from a different date could result in a significantly different
view of the web ecosystem. To quantify and frame this effect within
the dataset we have collected, we compare to the recently released
dataset by Das et al. [19] which was part of their concurrent study
on mobile sensor fingerprinting. While their collection set up was
different (they used a modified version of OpenWPM as opposed
to actual mobile devices) they also logged mobile sensor APIs used
by popular websites. When comparing the domains that accessed
mobile-specific WebAPI calls during our experiments to those in
their dataset, we find only 403 overlapping domains – 7.9% of our
detected websites. However, our system detected WebAPI calls in
2,252 domains that are in their two US-based datasets but with no
calls logged during their experiments. Given that both of our ex-
periments were conducted at similar times, including some overlap
in May 2018, and used Alexa’s list (our version is from 03/24/2018
while their version is from 05/12/2018), this is a surprising result.



Another important dimension that needs to be considered is that
the modern web is highly dynamic and websites often introduce
new functionality or may even remove existing functionality. To
further explore how a view of the web can change through time, we
compare the actual WebAPI calls reported for those 403 overlapping
domains.While we find that for the vast majority (91.8%) of domains
both datasets report the same calls across the two datasets, there
are differences for 33 websites. In more detail, for those domains
our system logged a total of 74 WebAPI calls, while the datasets
from [19] contain 62 calls. This difference is partially due to that
study targeting a subset of the calls that our study explores. How-
ever, there are other domains [2] where the two datasets report
different sensor data being requested, which correspond to ∼ 3.47%
of the domains detected by both systems. While that number is
not very large, it is non-negligible and highlights the dynamic and
ever-evolving nature of the web.

5 RELATEDWORK
The WebAPI has standardized many features providing greater sup-
port for developers and improving the user experience [57]. Snyder
et al. [63] presented a cost-benefit analysis of the WebAPI using a
small set of websites (10K) and focusing on desktop browsing.

In an independent and concurrent recent study Das et al. [19]
presented a study on web scripts accessing mobile sensors. While
their study also targets WebAPI calls for mobile sensors, our work
presents significant differences. In regards to the actual datasets, our
study is on a considerably larger set of domains while also having
little overlap due to the fluctuation of the Alexa list [61]. Moreover,
their system detects a subset of the mobile-specific WebAPI calls
handled by our system, and their study focuses on sensor-based
fingerprinting thus offering a limited examination of the risks that
users face; we frame our findings within our attack taxonomy and
provide a more comprehensive evaluation of the feasibility of a
wide range of sensor-based attacks. Furthermore, our crawling
infrastructure uses actual mobile devices and provides a unique end-
to-end view of data requests and access, while their crawlers rely
on a modified version of OpenWPM running on desktop machines
which could be detected by evasive websites [43].

Browser fingerprinting has gathered a lot of attention and the
research community has extensively studied the techniques that
make it possible [28, 29]. With the growing usage of smartphones,
traditional desktop fingerprinting techniques [67] are becoming
less effective as some information is being standardized in many
mobile browsers [39]. On the other hand, the development of new
mobile-specific HTML5 WebAPIs offered new avenues for trackers
to exploit other types of data that were not present in desktops. As
previous work [9, 10, 15, 20–23, 25, 30, 36, 39, 40, 47, 52, 55, 58, 59, 73,
74] has shown, the huge amount of input collected by smartphones
sensors resulted in new opportunities for device fingerprinting.

6 CONCLUSION
We presented a comprehensive evaluation of the threats that mobile
users face when browsing the Web, due to capabilities offered by
modern browsers, by conducting the largest and most extensive
study to date on the use of mobile-specific WebAPI calls in the

wild. Our study was conducted using a novel crawling infrastruc-
ture built on top of actual smartphones. Our findings demonstrate
that WebAPI capabilities are actively being used by websites for
accessing mobile sensors. To provide the appropriate context that
highlights the true threat posed by this practice, we created a taxon-
omy of sensor-based attacks compiled from a wide range of attacks
demonstrated in prior work. Our subsequent in-depth analysis cor-
related the sensor data currently being accessed by websites and
the data-requirements of prior attacks, leading to several alarming
findings. We argue that our findings support the need for more
stringent policies for websites attempting to access sensor data.
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