
Updates and Revision in Faceted Taxonomies and CTCA Expressions 1

Yannis Tzitzikas

Computer Science Department, University of Crete (Greece),
Information Systems Lab, Institute of Computer Science, FORTH-ICS (Greece)

Email : tzitzik@csd.uoc.gr

Abstract

A faceted taxonomy is a forest of taxonomies each describing the application domain from a
different (preferably orthogonal) point of view. CTCA is an algebra that allows specifying the set
of meaningful compound terms (meaningful conjunctions of terms) over a faceted taxonomy in a
flexible and efficient manner. However, taxonomy updates may turn a CTCA expression e not well-
formed and may turn the compound terms specified by e to no longer reflect the domain knowledge
originally expressed in e. This paper shows how we can revise e after a taxonomy update and
reach an expression e′ that is both well-formed and whose semantics (compound terms defined)
is as close as possible to the semantics of the original expression e before the update. Various
cases are analyzed and the revising algorithms are given. The proposed technique can enhance the
robustness and usability of systems that are based on CTCA and allows optimizing several other
tasks where CTCA can be used (including mining and compressing).

Keywords: faceted taxonomies, updates, knowledge revision.

1 Introduction

Suppose that we want to build a catalog of traditional recipes from all over the world and for this
purpose we decide to define facets like Ingredients, LocationOfOrigin and CookingStyle as shown in
Figure 1. Notice that several combinations of terms are invalid, even in this very small domain.
For example, the compound term {Truffle (from Ingredients), Greece (from Location)} is invalid
as it is impossible to find truffle in Greece, hence there cannot be a traditional Greek recipe that
contains truffle. For the same reason the compound term {Roquefort (from Ingredients), Greece
(from Location)} is invalid as well as the compound term {Feta (from Ingredients), France (from
Location)}. Moreover, the compound term {Wok (from CookingStyle), Europe (from Location)} is
invalid because wok is used in Asia and not in Europe. According to these assumptions, the partition of
compound terms to the set of valid (meaningful) compound terms and invalid (meaningless) compound
terms is shown in Table 7 found at Appendix A.
CTCA (Compound Term Composition Algebra) [23, 24] is an algebra that allows specifying the set

of meaningful compound terms over a faceted taxonomy in a flexible and efficient manner. By using
CTCA the designer provides only a small set of valid or invalid compound terms and from these sets
other valid and invalid compound terms are inferred. Having partitioned the set of compound terms
to the set of valid and invalid is quite important as this can significantly aid the task of indexing

1Alternative title: “Revising (or Preserving) the Set of (CTCA-specified) Valid Term Conjunctions after Taxonomy
Updates”

1

objects according to the faceted taxonomy, and the task of browsing a collection of objects that are
indexed according to a faceted taxonomy (for more see [25]).
Let F be a faceted taxonomy, i.e. a forest of taxonomies (T 1,≤1), . . . , (T k,≤k), and let T =T 1 ∪

. . . ∪ T k. Each expression e of CTCA specifies a set SF
e of valid (i.e. meaningful) compound terms

(conjunctions of terms) over T . So an expression e actually defines the partition (SF
e ,P(T)−SF

e)
where P(T) denotes the powerset of T . For example, the partition shown in Table 7, can be specified
using the following very short CTCA expression:

e = (Ingredients⊕P LocationOfOrigin)ªN CookingStyle

with the following P and N parameters:

P = {{Feta,Greece}, {Roquefort, France}, {Truffle, France}, {Truffle, Italy},
{Cheese, Italy}, {Cheese, Japan}}

N = {{Europe, Wok}}

Earth

Feta Roquefort

Cheese Truffle

Ingredients

Greece Italy France Japan

AsiaEurope

CookingStyle

Oven Wok

Ingredients LocationOfOrigin CookingStyle

Figure 1: A faceted taxonomy for indexing traditional recipes
Table 1 shows the partition defined by a subexpression of the above expression, specifically by the

expression Ingredients⊕P LocationOfOrigin. This expression partitions the set of compound terms
over the first two facets of Figure 1.

Valid

Feta, Greece Feta, Europe Feta, Earth
Cheese, Greece Cheese, Europe Cheese, Earth
Ingredients, Greece Ingredients, Europe Ingredients, Earth
Roquefort, France Roquefort, Europe Roquefort, Earth
Cheese, France Ingredients, France Truffle, France
Truffle, Europe Truffle, Earth Truffle, Italy
Cheese, Italy Ingredients, Italy Cheese, Japan
Cheese, Asia Ingredients, Japan Ingredients, Asia

Invalid

Feta, Italy Feta, France
Feta, Japan Feta, Asia
Roquefort, Greece Roquefort, Italy
Roquefort, Japan Roquefort, Asia
Truffle, Greece Truffle, Japan
Truffle, Asia

Table 1: The partition defined by the expression Ingredients⊕P LocationOfOrigin

As the facet Ingredients has 5 terms and the facet LocationOfOrigin has 7 terms, the number of compound
terms that contain exactly 1 term from each facet is 5*7 = 35. This table contains 24 valid and 11 invalid
compound terms, thus 35 in total.

However, an update operation uF on F (resulting to a faceted taxonomy F ′) may turn the expression
e obsolete (i.e. not well-formed), or it may make the derived compound terminology SF ′

e to no longer
reflect the desire of the designer, i.e. it may no longer reflect the domain knowledge that was expressed
in e. For example, if a term t ∈ T is deleted, and t appears in a compound term in a parameter (P
or N , for more see Section 2) of the expression e, then e will no longer be well-formed. In addition,
the deletion of t may make several compound terms (that do not even contain t) to no longer belong
to SF ′

e . It would be very useful if we could update automatically e to an expression e′ that is (a)
well-formed (w.r.t. F ′), and (b) SF ′

e′ is as close to SF
e as possible. We will call this problem expression

revision after taxonomy update. Figure 2 describes graphically the interrelationships between F, F ′,
e, e′, SF

e and SF ′
e′ .

2

?

automatic
update

update by
the designer

e

min. distance

F

F’

Fu u
e

Se

Se’e’

F

F’

Faceted taxonomy CTCA expression Compound terminology defined by e

Figure 2: Expression revision after taxonomy update

Solving this problem would be very useful during the process of valid compound term specification,
i.e. it can enhance the robustness and usability of systems that are based on CTCA, like FASTAXON
[26]. In addition, as a CTCA expression can be also used for exchanging compactly the compound
terms that are extensionally valid according to a materialized faceted taxonomy (using the mining
algorithms presented in [22, 21]), this automation can be exploited in order to avoid reapplying these
(computationally expensive) mining algorithms after an update of the faceted taxonomy. Moreover,
as showed in [20, 19], CTCA can be used for compressing a Symbolic Data Table [4]. In this context,
this automation can also be exploited in order to avoid recompressing a Symbolic Data Table after a
small change on its contents.
The rest of this paper is organized as follows. Section 2 recalls the basics of the Compound Term

Composition Algebra (CTCA), and Section 3 describes the taxonomy update operations that we
consider. Subsequently, Section 4 defines formally the problem of expression revision after taxonomy
update, and Section 5 gives a solution to this problem for each type of update operations. Finally,
Section 7 concludes the paper and identifies issues for further research.

2 The Compound Term Composition Algebra

Faceted classification was suggested quite long ago by Ranganathan in the 1920s [17]. The adoption of
faceted taxonomies is beneficial for Libraries [12], Software Repositories [13, 14], Web Catalogs or Web
Sites [15], and other application domains, like biology2. Current interest in faceted taxonomies is also
indicated by several recent or ongoing projects and the emergence of XFML [1](Core-eXchangeable
Faceted Metadata Language), a markup language for applying the faceted classification paradigm on
the Web. Other work on faceted classification includes [6, 27, 11] and the more recent [16, 18].

The Compound Term Composition Algebra (CTCA) is an algebra consisting of four basic algebraic
operators (plus-product, minus-product, plus-self-product, and minus-self-product) which can be used
for specifying the set of compound terms over a given faceted taxonomy that are valid (i.e. meaning-
ful) in the application domain. From a “logical” point of view, we could say that CTCA is an algebra
for specifying the “satisfiable” conjunctions of terms. The initial motivation for CTCA was to provide
a well-founded method that is both flexible and economical (in terms of required input) and compu-
tationally efficient. One system based on CTCA has already been built [26], while other applications
of CTCA are described in [20, 22, 21]. The semantics of CTCA differ from that of Description Logics
(DL)[5] mainly because each operation of CTCA makes either a positive or a negative closed world
assumption at its range, as it is shown in detail in [24]. Specifically, for a DL-based representation of
an expression e, we have to convert either all plus-product operations to minus-products, or all minus-

2The Gene Ontology (http://www.geneontology.org/) is a faceted taxonomy for indexing gene products.

3

product operations to plus-products. Firstly, this does not allow a natural representation in DL, and
secondly, in many cases the resulting DL representation of e has much more sentences (concept axioms
or concept assertions) than the parameters of the expression e.
Table 2 below recalls in brief the basic notions and notations around taxonomies and faceted tax-

onomies that are used in this paper.

Name Notation Definition

terminology T a finite set of names called terms

subsumption ≤ a preorder relation (reflexive and transitive)

taxonomy (T ,≤) T is a terminology, ≤ a subsumption relation over T
faceted taxonomy F = {F1, ..., Fk} Fi = (T i,≤i), for i = 1, ..., k and all T i are disjoint

compound term over T s any subset of T (i.e. any element of P(T))

compound terminology S a subset of P(T) that includes ∅
compound ordering over S ¹ Given s, s′ ∈ S, s ¹ s′ iff ∀t′ ∈ s′ ∃t ∈ s such that t ≤ t′.
immediate broaders of t Br(1)(t) the smaller terms that are greater than t (w.r.t ≤),

i.e. minimal≤({t′ ∈ T | t ≤ t′, t 6= t′})
immediate narrowers of t Nr(1)(t) the bigger terms that are smaller than t (w.r.t ≤),

i.e. maximal≤({t′ ∈ T | t′ ≤ t, t 6= t′})
broaders of t Br(t) {t′ ∈ T | t ≤ t′}
narrowers of t Nr(t) {t′ ∈ T | t′ ≤ t}
broaders of s Br(s) {s′ ∈ P (T) | s ¹ s′}
narrowers of s Nr(s) {s′ ∈ P (T) | s′ ¹ s}
broaders of S Br(S) ∪{Br(s) | s ∈ S}
narrowers of S Nr(S) ∪{Nr(s) | s ∈ S}

Table 2: Notations

Some remarks about the taxonomies that we consider are in order.
Each cycle (formed by subsumption relationships) that may exist in a taxonomy, defines a class of

equivalent terms (e.g. we can write t ∼ t′ iff t ≤ t′ and t′ ≤ t). However, and without loss of generality,
we can hereafter consider that each ≤ is acyclic. In case the initial subsumption relation is cyclic, we
can consider that ≤ denotes the subsumption relation over the classes of equivalence that are induced
by the initial subsumption relation. So, we can safely assume that ≤ has the form of a directed acyclic
graph (or a tree). Note that under this perspective, ≤ is also antisymmetric, so it is actually a partial
order (and not just a preorder).

2.1 CTCA: Syntax and Semantics

Let F = {(T 1,≤1), . . . , (T k,≤k)} be a faceted taxonomy and let T =T 1 ∪ . . . ∪ T k. Each CTCA
expression e specifies a compound terminology, i.e. a set of compound terms which we denote by SF

e ,
or Se for short (clearly, Se ⊆ P(T)). Syntactically, an expression e over F is defined according to the
following grammar (i = 1, ..., k):

e ::= ⊕P (e, ..., e) | ªN (e, ..., e) | ∗⊕P Ti |
∗ªN Ti | Ti

The initial operands, thus the building blocks of the algebra, are the basic compound terminologies,
which are the facet terminologies with the only difference that each term is viewed a singleton. In most
of the cases, taxonomies are trees. The basic compound terminology of a tree-structured taxonomy
(T i,≤i) is defined as:

Ti = {{t} | t ∈ T i} ∪ {∅}
A definition that captures the general case (i.e. taxonomies that are not trees) follows:

Ti = ∪{ Br({t}) | t ∈ T i}

4

The motivation for this difference is that every individual term of a taxonomy is by default assumed
that it is valid (meaningful), i.e. there are real-world objects (at least one) to which this term applies.
It follows, that in the taxonomy C of Figure 3, the compound term {c2, c3} should be considered as
valid as it subsumes {c4}. This is captured by the above formula as {c2, c3} ∈ Br({c4}).
Plus-products and minus-products, denoted by ⊕P and ªN respectively, have a parameter that is

denoted by P (resp. N) which is a set of compound terms over T . In a P parameter the designer
puts valid compound terms, while in a N parameter the designer puts invalid compound terms. The
exact definition of each operation of CTCA (also including two auxiliary operations, called product
and self-product) is summarized in Table 3.
An expression e is well formed iff every facet Ti appears at most once, and every parameter set P or

N of e is always subset of the corresponding set of genuine compound terms. Specifically, the genuine
compound terms in the context of an operation ⊕P (e1, ..., ek) (or ªN (e1, ..., ek)) is denoted by Ge1,...,ek

and it is defined as:
Ge1,...,ek

= Se1 ⊕ ...⊕ Sek
− ∪n

i=1Sei

For example, the compound term {Truffle, Greece} is a genuine compound term in the context of
an operation Ingredients ªN LocationOfOrigin, but not genuine in the context of the operation
(IngredientsªN LocationOfOrigin)⊕ CookingStyle.
Now the set of genuine compound terms in the context of a self-product operation, is denoted by GTi

and is defined as: GTi =
∗⊕ (Ti)− Ti.

From Table 3, one can easily see that if e is a plus-product then Se increases as P gets larger, while
if e is a minus-product then Se decreases as N gets larger. In that sense, minus-products are non-
monotonic. However, as we have shown in [24], well-formed expressions have a monotonic behavior
with respect to number of facets, meaning that the valid compound terms of a subexpression cannot
be invalidated by an expression that contains it.
The algorithm IsV alid(e, s), given in [25], takes as input a (well-formed) expression e and a compound

term s, and checks whether s ∈ Se. This algorithm has polynomial time complexity, specifically
O(|T |3 ∗ |P ∪ N|), where P denotes the union of all P parameters and N denotes the union of all N
parameters appearing in e. The pair (Se,¹) is called the compound taxonomy of e.

Operation e Se

Ti { {t} | t ∈ T i} ∪ {∅}
product e1 ⊕ ...⊕ en { s1 ∪ ... ∪ sn | si ∈ Sei}
plus-product ⊕P (e1, ...en) Se1 ∪ ... ∪ Sen ∪ Br(P)
minus-product ªN (e1, ...en) Se1 ⊕ ...⊕ Sen −Nr(N)

self-product
∗⊕ (Ti) P (T i)

plus-self-product
∗⊕P (Ti) Ti ∪Br(P)

minus-self-product
∗ªN (Ti)

∗⊕ (Ti)−Nr(N)

Table 3: The operations of the Compound Term Composition Algebra

For instance, Figure 3 shows a faceted taxonomy consisting of three facets, A,B and C. Some
examples of compound terminologies that are defined by expressions of CTCA are given in Table 4
(the empty compound term {∅} is not shown, and we adopt the basic compound terminologies for
trees, i.e. we do not show the {c2, c3}).
We also assume that each facet (T i,≤i) is assigned a unique name, which we will denote by nm(T i).

Some extra notations that we shall use in the sequel follow:

5

c4

A B C

a1

a2

b1

b2 b3

c1

c2 c3

Figure 3: A faceted taxonomy consisting of three facets

e Se

A⊕P B, P = ∅ {{a1}, {a2}, {b1}, {b2}, {b3}}
AªN B, N = ∅ {{a1}, {a2}, {b1}, {b2}, {b3},

{a1, b1}, {a1, b2}, {a1, b3}, {a2, b1}, {a2, b2}, {a2, b3}}
A⊕P B, P = {{a2, b1}} {{a1}, {a2}, {b1}, {b2}, {b3}, {a1, b1}, {a2, b1}}
AªN B, N = {{a1, b2}, {a1, b3}} {{a1}, {a2}, {b1}, {b2}, {b3}, {a1, b1}, {a2, b1}}
(AªN B)⊕P C, N = {{a2, b2}}, P = {{a1, b3, c1}} {{a1}, {a2}, {b1}, {b2}, {b3},

{a1, b1}, {a1, b2}, {a1, b3}, {a2, b1}, {a2, b3},
{a1, b3, c1}, {a1, b1, c1}, {a1, c1}, {b3, c1}, {b1, c1}}

(A⊕P B)ªN C, P = {{a1, b1}} N = {{b3, c4}}, {{a1}, {a2}, {b1}, {b2}, {b3}, {a1, b1},
{a1, c1}, {a1, c2}, {a1, c3}, {a1, c4},
{a2, c1}, {a2, c2}, {a2, c3}, {a2, c4},
{b1, c1}, {b1, c2}, {b1, c3}, {b1, c4},
{b2, c1}, {b2, c2}, {b2, c3}, {b2, c4},
{b3, c1}, {b3, c2}, {b3, c3},
{a1, b1, c1}, {a1, b1, c2}, {a1, b1, c3}, {a1, b1, c4}}

Table 4: Some examples of CTCA-defined compound terminologies

• f(t): the name of the facet of term t, i.e. if t ∈ T i then f(t) = nm(T i), e.g. f(Feta) =
Ingredients.

• f(e): the names of the facets that appear in e, e.g. f((T1⊕P T2)ªNT3) = {nm(T 1), nm(T 2), nm(T 3)}.
• πf(e)(s) = { t ∈ s | f(t) ∈ f(e)}, this is the “projection” of s to the facets of e, e.g.

πf(A⊕P B)({a1, b1, c3}) = {a1, b1}.

3 Taxonomy Updates

Here we discuss the taxonomy update operations that we consider. We consider two primitive update
operations on subsumption relationships, namely:

• subsumption relationship deletion, denoted by delete(t ≤ t′), and

• subsumption relationship addition, denoted by add(t ≤ t′).

Before an operation delete(t ≤ t′) we assume that the relationship t ≤ t′ belongs to the transitive
reduction (Hasse Diagram) of ≤. Now before an operation add(t ≤ t′) we assume that the relationship
t ≤ t′ does not already exist in ≤. For instance, Figure 4 shows an example of a deletion and an
addition of a subsumption relationship. We also assume that both t and t′ belong to the same facet.

We also consider three update operations on terms:

• term renaming, denoted by rename(t, t′),

6

a1

a2

a3

a4

a1 a3

a2 a4

a1

a2

a3

a4

delete a3<a2 add a3<a2

Figure 4: Deletion and addition of subsumption relationships

• term deletion, denoted by delete(t), and

• term addition, denoted by add(t).

Concerning the deletion of terms we consider that whenever a term t is deleted, all subsumption
relationships in which t participates are deleted too. For example, the deletion of a3 in Figure 5(a)
will trigger the deletion of the following relationships {a3 ≤ a1, a3 ≤ a2, a4 ≤ a3, a5 ≤ a3}. However,
as the relation ≤ is transitive, after the deletion of a3 the taxonomy will be as shown in Figure 5(b). If
however the transitive links of ≤ are not stored in the base, i.e. if only the transitive reduction of ≤ is
stored, then whenever a term t is deleted, the immediate parent(s) of t should become parent(s) of all
immediate children of t. Recall that Br(1)(t) denotes the set of all terms which immediately subsume
t, and Nr(1)(t) denotes the set of all terms which are immediately subsumed by t. After deleting term
t, for all t′ ∈ Nr(1)(t) is holds Br(1)(t′) ⊇ Br(1)(t).

a3

a1 a2

a4 a5

a1 a2

a4 a5

delete a3

(a) (b)

Figure 5: Term Deletion

Now we will introduce two auxiliary (composite) operations. Although they can be expressed in terms
of the primitive update operations, we study them separately because they occur very frequently
in practice, and because it is interesting to study what the designer wishes (concerning expression
revision) after each of these operations. In particular, we consider the following two:

• term addition as leaf node, denoted by addLeaf(t, Par), where Par ⊆ T
This operation adds a new term t as leaf of the taxonomy, specifically t becomes child of every
term in Par.

• term addition as intermediate node, denoted by addIntermediate(t, Chi, Par).

This operation adds a new term t as intermediate term, specifically t becomes child of every
term in Par and parent of every term in Chi.

Clearly, the first operation is a special case of the second, i.e. addLeaf(t, Par) = addIntermediate
(t, ∅, Par). Now addIntermediate(t, Chi, Par) can be analyzed in the following sequence of updates:
add(t), add(t ≤ p) for every p ∈ Par, and add(c ≤ t) for every c ∈ Chi.

If we assume that these update operations take place in a taxonomy T , then their preconditions can
be expressed as shown in Table 5.

7

Operation Pre-condition
add(a) a 6∈ T
delete(a) a ∈ T
delete(b ≤ a) b ∈ NrF

(1)(a)
add(b ≤ a) b 6∈ NrF (a), f(b) = f(a)
addLeaf(a, Par) a 6∈ T , Par ⊆ T
addIntermediate(a,Chi, Par) a 6∈ T , Chi ⊆ T , Par ⊆ T

Table 5: Preconditions of Taxonomy Update Operations

Let F ′ denote the faceted taxonomy F after one update operation. Below we describe the effects of
each update operation on the broader and narrower terms of each term.

• add(a)

NrF ′(a) = BrF ′(a) = ∅
If t 6= a then BrF ′(t) = BrF (t) and NrF ′(t) = NrF (t).

• delete(a)

Roughly, we could say that for every t 6= a it holds BrF (t) − BrF ′(t) ⊆ {a} and NrF (t) −
NrF ′(t) ⊆ {a}. More specifically:

If t ≤ a, then BrF ′(t) = BrF (t)− {a}, otherwise BrF ′(t) = BrF (t).

If a ≤ t, then NrF ′(t) = NrF (t)− {a}, otherwise NrF ′(t) = NrF (t).

• delete(b ≤ a)

If a ≤ t, then NrF ′(t) = NrF (t)−NrF (b), otherwise NrF ′(t) = NrF (t).

If t ≤ b, then BrF ′(t) = BrF (t)−NrF (a), otherwise BrF ′(t) = BrF (t).

• add(b ≤ a)

If a ≤ t then NrF ′(t) = NrF (t) ∪NrF (b), otherwise NrF ′(t) = NrF (t).

If t ≤ b then BrF ′(t) = BrF (t) ∪BrF (a), otherwise BrF ′(t) = BrF (t).

• addLeaf(a, Par)

NrF ′(a) = ∅
BrF ′(a) =

⋃{BrF (p) | p ∈ Par}
If p ∈ Par and p ≤ t, then NrF ′(t) = NrF (t) ∪ {a}, otherwise NrF ′(t) = NrF (t).

If t 6= a then BrF ′(t) = BrF (t).

• addIntermediate(a,Chi, Par)

NrF ′(a) =
⋃{NrF (c) | c ∈ Chi}

BrF ′(a) =
⋃{BrF (p) | p ∈ Par}

If p ∈ Par and p ≤ t, then NrF ′(t) = NrF (t) ∪ {a} ∪ (
⋃{NrF (c) | c ∈ Chi}), otherwise

NrF ′(t) = NrF (t).

If c ∈ Chi and t ≤ c, then BrF ′(t) = BrF (t) ∪ {a} ∪ (
⋃{BrF (p) | p ∈ Par}), otherwise

BrF ′(t) = BrF (t).

8

4 Problem Statement

Let F be a faceted taxonomy and let e be an expression of CTCA that defines the desired compound
terminology SF

e . Now assume an update operation uF on F and let F ′ be the resulting faceted
taxonomy. Clearly, this update may turn the expression e obsolete, specifically:

• e may no longer be well-formed (and thus SF ′
e may be undefinable),

• SF ′
e may be well-formed but may no longer reflect the desire of the designer.

Roughly, and in the ideal case, we would like to find an expression e′ such as:

(α) e′ is well-formed, and

(β=) SF ′
e′ = SF

e .

Although condition (α) can be satisfied quite easily, condition (β=) may be impossible to satisfy in
some cases, e.g. in the obvious case when F ′ is derived by deleting terms from F . We can thus relax
condition (β=) and consider that our objective is to find an expression e′ such that SF ′

e is as close
to SF

e as possible. Of course, closeness or distance has to be defined formally. It is quite natural to
define the distance between two compound terminologies S, S′ as the cardinality of their symmetric
difference (in the classical set-theoretic sense), i.e. we can write:

dist(S, S′) = |(S − S′) ∪ (S′ − S)| = |S − S′|+ |S′ − S| (1)

Now let SF ′ be the set of all compound terminologies over F ′ that can be defined by expressions of
CTCA. We can now express condition (β) formally as follows:

(β) SF ′
e′ = argS min{dist(S, SF

e) | S ∈ SF ′}
The righthand side of this equation returns the S ∈ SF ′ that has the minimum distance from SF

e .
However, in some application scenarios, we may prefer SF ′

e′ to be a subset of SF
e than being a superset,

or the reverse. Consequently, we may state state two, different than (β), conditions:

(γ) SF ′
e′ ⊆ SF

e and SF ′
e′ is the biggest possible in SF ′ .

In other words, SF ′
e′ = argS min{|SF

e − S| | S ∈ SF ′ , S ⊆ SF
e }

(δ) SF ′
e′ ⊇ SF

e and SF ′
e′ is the smallest possible in SF ′ .

In other words, SF ′
e′ = argS min{|S − SF

e | | S ∈ SF ′ , S ⊇ SF
e }

Of course, to find the sought expression e′ we would not like to investigate all expressions in SF ′ (as
this would be computationally inadmissible), but we rather want to find a method for modifying e to
an e′ that satisfies (α) and (β or γ or δ).

5 CTCA Expression Revision

In the following we will assume that the basic compound terminologies are defined as in tree-structured
taxonomies (i.e. Ti = {{t} | t ∈ T i} ∪ {∅}). The reason is that an operation delete(b ≤ a) may
turn a DAG-structured taxonomy into a tree-structured taxonomy, while an operation add(b ≤ a)
may turn a tree-structured taxonomy into a DAG-structured taxonomy or into a cyclic taxonomy.
So these operations may change the basic compound terminologies. By adopting basic compound
terminologies for tree-structured taxonomies we can overcome this issue and focus on the essential

9

part of the problem of expression revision that concerns the combinations of elements from the basic
compound terminologies (specifically, of those compound terms that contain at most one term from
each facet).

Let’s now introduce some additional notations. Given a compound term s and a term t, we shall
use the notation s#t to denote the compound term s− {t}. Now given a compound term s and two
terms t and t′, we shall use the notation s#t#t′ to denote the compound term s if t 6∈ s, otherwise
the compound term derived from s by replacing t by t′, i.e.:

s#t#t′ =
{

(s− {t}) ∪ {t′}, if t ∈ s
s otherwise

For example, {a, b, c}#b#e = {a, e, c}, while {a, b, c}#e#f = {a, b, c}.
We can generalize and for every compound terms s, s1, s2, define:

s#s1#s2 =
{

(s− s1) ∪ s2, if s ∩ s1 6= ∅
s otherwise

For example, {a, b, c}#{b, c, d}#{e, f, g} = {a, e, f, g}.
Below we study expression revision for each update operation uF that can be applied on F .

5.1 term renaming, rename(t, t′)

This is rather a trivial case. It is evident that the “best” compound terminology in SF ′ , is the one
obtained by replacing t by t′, i.e.: Ssol = {s#t#t′ | s ∈ Se} (and clearly Ssol ∈ SF ′).
In order to reach to an expression e′ (that defines Ssol) we just have to replace the term t by the term

t′ in all compound terms of the parameters P and N of e (in case they contain the term t). Thus,
from each parameter set P (or N) of e, we can derive the corresponding parameter P ′ (or N ′) of e′,
as follows:

P ′ = {s#t#t′ | s ∈ P} and N ′ = {s#t#t′ | s ∈ N}.

5.2 term deletion, delete(a)

It is quite clear that here the “best” compound terminology in SF ′ , is the following: Ssol = {s#a | s ∈
SF

e }. It is also clear that for every P or N parameter of e, the corresponding P ′ or N ′ parameter of
the sought expression e′, should satisfy the following equations:

BrF ′(P ′) = { s#a | s ∈ BrF (P)}
NrF ′(N ′) = { s#a | s ∈ NrF (N)}

Note that if a compound term s does not contain a then

BrF ′(s) = { s′#a |s′ ∈ BrF (s)} , and NrF ′(s) = { s′#a |s′ ∈ NrF (s)}

This holds due to the postconditions of delete(a) as mentioned in Section 33. This means that we
do not have to care about the parameters of e that do not contain the term a. On the other hand, if
a appears in one parameter of e, then SF ′

e is no longer well-formed. We should therefore modify all
parameters of e that contain a. Consider a compound term s that contains a and s appears in a P

3More specifically:
If t ≤ a, then BrF ′(t) = BrF (t)− {a}, otherwise BrF ′(t) = BrF (t).

If a ≤ t, then NrF ′(t) = NrF (t)− {a}, otherwise NrF ′(t) = NrF (t).

10

parameter. In this case we should replace s by all s′ that are obtained by replacing a by an immediately
broader term of a. Let sp = { s#a#t | t ∈ BrF

(1)(a)}. It is clear that BrF ′(sp) = { s#a | s ∈ BrF (s)}.
If instead s appears in a N parameter, then we should replace s by all s′ that are obtained by
replacing a by an immediately narrower term of a. Let sn = { s#a#t | t ∈ NrF

(1)(a)}. It is clear that

NrF ′(sn) = { s#a | s ∈ NrF (s)}.
Summarizing, we can define the sets P ′ and N ′ of e′ as follows:

P ′ =
⋃

s∈P

{s#a#t | t ∈ BrF
(1)(a)}

N ′ =
⋃

s∈N

{s#a#t | t ∈ NrF
(1)(a)}

Consequently, it is not hard to see that it holds: SF ′
e′ = {s#a | s ∈ SF

e }. Clearly, this is the closest
to SF

e compound terminology over F ′. Specifically, it satisfies the condition (β). Figure 6 shows two
examples of such an updating. In the first one, e is a plus-product operation, while in the second, e
is a minus-product operation.

a1 a2

a4 a5

b

A’ B

a3

a1 a2

a4 a5

B

b

A

P
e=A B

P={ {a3,b} } N={ {a3,b} }

e=A B
N

ue

P’
e’=A’ B

P’={ {a1,b}, {a2,b} }

u F

F’

F

delete a3

 :

N’={ {a4,b}, {a5,b} }
N’

e’=A’ B

u e

Figure 6: Expression revision after term deletion

5.3 term addition, add(a)

Clearly, this addition does not make e obsolete, i.e. SF ′
e is certainly a well-formed expression. The

question here is whether the compound terms that contain the newly inserted term a should be valid
or not. According to the minimum distance criterion (of Section 4), they should be invalid, in other
words, it should hold SF

e = SF ′
e′ .

Suppose that a has been assigned to a facet T i which is operand of a plus-product operation. In this
case, we don’t have to update the parameter P of this operation because all compound terms that
contain a do not belong to BrF ′(P) (because a is not connected to any other element of T i). For the
same reason we do not need to update any other P parameter of e.
On the other hand, if facet T i is operand of a minus-product operation, then we have to modify

the parameter N . The reason is that since a is not connected to any other term of T i, all compound
terms that contain a cannot belong to NrF ′(N), hence they are considered as valid (according to
the semantics of ªN). Below we explain how we can modify N so as to turn these compound terms
invalid. Let tops denote the maximal elements (w.r.t. ¹) of the compound terminologies that are
operands of the minus-product operation, excluding the facet T i. For example, if e = ªN (T1, . . . , Tk)

11

then tops = ∪j=1...k,j 6=imaximal≤(T j). We have to add to N all compound terms { {a, u} | u ∈ tops},
thus we can define N ′ as follows:

N ′ = N ∪ (
⋃

j=1..k,j 6=i

{ {a, uj} | uj = maximal≤(Tj)})

We have to update analogously the N parameter of every minus-product operation. Specifically, for
every minus-product operation ªN (e1, ..., ek) and for every ei (1 ≤ i ≤ k) such that f(a) 6∈ f(ei), we
have to add to N the parameter {a, ui} for each ui ∈ maximal¹(Sei).
It is not hard to see that in this way we will get SF ′

e′ = SF
e ∪ {{a}}.

5.4 subsumption relationship deletion, delete(b ≤ a)

This deletion does not necessarily make e obsolete. However, this deletion can change the sets Nr(N)
or Br(P) of the operation that contains the facet of the terms a and b, and thus change the set of
genuine compound terms of a subsuming operation, turning the expression e not well-formed.
Let’s now suppose that we seek for an e′ such as SF

e = SF ′
e′ . Ideally, for every P or N of e we want

to find a P ′ or N ′ such that: BrF ′(P ′) = BrF (P) and NrF ′(N ′) = NrF (N). Recall from Sec. 3 that
after the operation delete(b ≤ a) it holds:
If a ≤ t, then NrF ′(t) = NrF (t)−NrF (b), otherwise NrF ′(t) = NrF (t).
If t ≤ b, then BrF ′(t) = BrF (t)−BrF (a), otherwise BrF ′(t) = BrF (t).
It follows that we have to care only about those parameters of e that contain either a term broader

than a, or a term narrower than b. For these parameters we should add extra parameters so that to
recoup the “missing compound terms”, i.e. those missed due to the reduction of Nr(t) and Br(t).
For achieving this, for each s ∈ P which contains a term t′′ that is narrower than b, we add to P ′ a

compound term s′ which is derived from s by replacing t′′ by a. One can easily see that in this way
we have BrF ′(P ′) = BrF (P). Specifically the set P ′ is defined as follows:

P ′ = P ∪ { s#NrF (b)#{a} | s ∈ P}

Analogously, for each s ∈ N which contains a term t′′ that is broader than a, we add to N ′ a compound
term s′ which is derived from s by replacing t′′ by b. One can easily see than in this way we have
NrF ′(N ′) = NrF (N). Specifically, the set N ′ is defined as follows:

N ′ = N ∪ { s#BrF (a)#{b} | s ∈ N}

We can easily see that in this way the result of the operation that involves the facet T i remains the
same. Consequently, we don’t have to make any other update on the expression. We have achieved
SF

e = SF ′
e′ . Figure 7 shows two examples of such an updating: one for a plus-product and one for a

minus-product operation.

5.5 subsumption link addition, add(b ≤ a)

Although this addition does not necessarily make e obsolete, it may however change the genuine
compound terms of a subsuming operation, and thus turn the entire e not well-formed. Our main
objective is to revise the expression to a well-formed one. Secondly, we would like to find an e′ such
as SF

e = SF ′
e′ . As we shall will see below there are cases where there is no expression e′ such that

SF
e = SF ′

e′ . Two such cases are shown in Figure 8. Below we shall identify when this happens.
In the following we assume that terms a and b belong to a facet T i of a faceted taxonomy F , and

that F ′ denotes the faceted taxonomy after the update operation Add(b ≤ a).

12

B

b

A a1

a2

a3

a4

b

B

a1 a3

a2 a4

A’

P
e=A B

P={ {a3,b} }

P’
e’=A’ B

P’={ {a3,b}, {a2,b} } N’={ {a2,b}, {a3,b} }
N’

e’=A’ B

N={ {a2,b} }

e=A B
N

u e
Fu :

F

F’

delete a3<a2 u e

Figure 7: Expression revision after subsumption relationship deletion

a1

a2

a3

a4

b

BA’

a1 a3

a2 a4

B

b

A

P’
e’=A’ B

P’={ {a4,b} }

P’
e’=A’ B

P’={ {a1,b} } N’={ {a4,b} }

e’=A B
N’

N’={ {a1,b} }

e’=A B
N’

P
e=A B

add a3<a2

F

F’

(I) (II) (I) (II)

P={ {a1,b}, {a4,b} }

e=A B
N

N={ {a1,b}, {a4,b} }

Figure 8: Expression revision after subsumption relationship addition

13

Prop. 1 We can find an expression e′ such that SF ′
e′ = SF

e if and only if:

(a) for every P parameter of e, it holds:

6 ∃x 6= ∅ s.t. {b} ∪ x ∈ BrF (P) while {a} ∪ x 6∈ BrF (P)

(b) for every N parameter of e, it holds:

6 ∃x 6= ∅ s.t. {a} ∪ x ∈ NrF (N) while {b} ∪ x 6∈ NrF (N)

Proof (sketch):

For every P of e, our objective is to find a P ′ such that BrF (P) = BrF ′(P ′). This is impossible if
there is a nonempty compound term x (i.e. x 6= ∅) such that:

{b} ∪ x ∈ BrF (P) while {a} ∪ x 6∈ BrF (P) (2)

This is because in F ′ it always holds: {b} ∪ x ¹ {a} ∪ x.
Now for every N parameter of e, our objective is to find a N ′ such that NrF (N) = NrF ′(N ′). One
can easily see that this is impossible if there is a compound term x 6= ∅ such that:

{a} ∪ x ∈ NrF (N) while {b} ∪ x 6∈ NrF (N) (3)

This is because in F ′ it always holds: {b} ∪ x ¹ {a} ∪ x.

¦
In other words, we can find an expression e′ such that SF ′

e′ = SF
e if and only if for every x 6= ∅ it

holds: if {b} ∪ x ∈ BrF (P) then {a} ∪ x ∈ BrF (P) and if {a} ∪ x ∈ NrF (N) then {b} ∪ x ∈ NrF (N).
In this case, we can set e′ = e and get SF ′

e = SF
e .

If conditions (a) and (b) of Prop. 1 do not hold, then it is not possible to satisfy the condition (β=).
Moreover, and as we shall see below, there are cases where it is impossible to reach an SF ′

e′ that is
either a subset or a superset of SF

e . For instance, consider the case shown in Figure 9 and the following
expression:

e = (A⊕P B)ªN C where P = {{a2, b}} and N = {{a1, c}}

c

A B C

b

a1

a2

F

c

A B C

a2a1 b

F’

Add(a2<a1)

Figure 9: Addition of a subsumption relationship
In this example we have:

SF
A⊕P B = {{a2, b}, {a1}, {a2}, {b}}

SF ′
A⊕P B = {{a2, b}, {a1, b}, {a1}, {a2}, {b}}

SF
(A⊕P B)ªNC = {{a2, b, c}, {a2, c}, {b, c}, {a2, b}, {a1}, {a2}, {b}}

SF ′
(A⊕P B)ªNC = {{a2, c}, {b, c}, {a2, b}, {a1, b}, {a1}, {a2}, {b}}

Although SF ′
A⊕B ⊃ SF

A⊕B, SF ′
e misses elements that are contained in SF

e . Notice that SF ′
e′ and SF

e are
not related with subset relation (only SF

e contains the compound term {a2, b, c} and only SF ′
e′ contains

the compound term {a1, b}).
Three questions arise now:

14

(i) How can we check efficiently whether the conditions (a) and (b) of Prop. 1 hold?

(ii) If the conditions of Prop. 1 do not hold, is SF ′
e well-formed or not?

(iii) If the conditions of Prop. 1 do not hold, how we should revise e to a well-formed (w.r.t. F ′) e′

so that the distance between SF
e and SF ′

e′ to be minimal ?

The subsequent two propositions gives us an answer to question (i).

Prop. 2
If p ∩NrF (b) = ∅ for all p ∈ P of every P of e, and
if n ∩BrF (a) = ∅ for all n ∈ N of every N of e,
then conditions (a) and (b) of Prop. 1 hold, and thus, SF ′

e = SF
e .

Proof:

Recall from Sec. 3 that:
if t ∈ BrF (a) then NrF ′(t) = NrF (t) ∪NrF (b), otherwise NrF ′(t) = NrF (t).
if t ∈ NrF (b) then BrF ′(t) = BrF (t) ∪BrF (a), otherwise BrF ′(t) = BrF (t).
This means that:
if p ∩NrF (b) = ∅ then BrF ′(t) = BrF (t) for each t ∈ p, which implies that BrF ′(p) = BrF (p).
if n ∩BrF (a) = ∅ then NrF ′(t) = NrF (t) for each t ∈ n, which implies that NrF ′(n) = NrF (n).

¦
This means that if the above conditions (which can be evaluated by a simple and efficient algorithm)

are satisfied, then we are sure that SF ′
e is well-formed and that SF ′

e = SF
e . If on the other hand, they

do not hold, then we cannot decide whether the conditions (a) and (b) of Prop. 1 hold or not. The
following proposition gives us sufficient and necessary conditions.

Prop. 3 We can find an expression e′ such that SF ′
e′ = SF

e if and only if:

(i) for each p ∈ P of every parameter P of e it holds:

If p ∩NrF (b) 6= ∅ then ∃p′ ∈ P such that p′ ¹F (p−NrF (b)) ∪ {a}
(ii) for each n ∈ N of every parameter N of e it holds:

If n ∩BrF (a) 6= ∅ then ∃n′ ∈ N such that n′ ºF (n−BrF (a)) ∪ {b}.
If (i) and (ii) hold then SF ′

e = SF
e .

Proof :

Firstly, note that if p∩NrF (b) = n∩BrF (a) = ∅, then the conditions (a) and (b) of Prop.
1 hold due to Prop. 2.

According to Prop. 1, we can find an e′ such that SF
e = SF ′

e′ if whenever {b}∪x ∈ BrF (P),
it also holds {a}∪x ∈ BrF (P), for every x 6= ∅. We can easily see that there exists a x 6= ∅
such that {b}∪x ∈ BrF (P), if and only if there is a p ∈ P such that p∩NrF (b) 6= ∅. Let’s
now investigate what x can be. From the above we can infer that x ∈ BrF (p −NrF (b)).
Thus we want {a} ∪ x ∈ BrF (P), for each x ∈ BrF (p−NrF (b)). This is true if and only
if ∃p′ ∈ P such that p′ ¹F (p−NrF (b)) ∪ {a}. So we proved (i).

(ii) is proved analogously to (i).

¦

15

Question (ii)
If the conditions of Prop. 1 do not hold, then it is impossible to find an e′ such that SF

e = SF ′
e′ .

However, SF ′
e is not necessarily badly-formed. For instance, in the example of Figure 9, SF ′

e is well-
formed. One method to check whether SF ′

e is well-formed is to check whether every individual element
of the P/N parameters of e belongs to the associated set of genuine compound terms. Notice that
this involves running |P ∪ N | times the algorithm IsV alid(e, s) [25].

Question(iii)
Suppose we follow the approach described above, i.e. we check every individual element of the P/N

parameters of e. What should we do in case we encounter an element of a parameter that does not
belong to the genuine compound terms of the associated operation? Should we delete it or modify it
and how?
Let’s first recall the effects of adding a subsumption relationship. For every t it holds BrF (t) ⊆

BrF ′(t) and NrF (t) ⊆ NrF ′(t). It follows that for every P or N parameter of an expression e it holds:

• BrF (P) ⊆ BrF ′(P), hence SF
e ⊆ SF ′

e (the compound terminology grows)

• NrF (N) ⊆ NrF ′(N), hence SF
e ⊇ SF ′

e (the compound terminology shrinks)

As only in minus-products the compound terminology becomes smaller (in plus-products it becomes
bigger), we may encounter a problematic compound term in a parameter of an operation that has as
operand (direct or indirect) a minus-product operation. This means that if e has only plus-products
then SF ′

e is certainly well-formed.

Below we introduce some notation that we shall use in the sequel.

• exprs(e): the subexpressions of e. Each non-leaf node of the parse tree of e correspond to a
subexpression of e. Note that e ∈ exprs(e).

• exprs−(e): the subexpressions of e that contain at least one ª operator that is not their top-
most operation. For example, exprs−((((T1 ª T2)⊕ T3)ª T4)⊕ T5) =
{ (T1 ª T2)⊕ T3, ((T1 ª T2)⊕ T3)ª T4, (((T1 ª T2)⊕ T3)ª T4)⊕ T5}.

Returning to our problem. If a parameter element s of an expression e does not belong to the
corresponding set of genuine compound terms (w.r.t. F ′), then this is due to a contained minus-
product operation. This means that only expressions in exprs−(e) can have parameter elements that
are not genuine.
Suppose that in the context of an expression e we encounter a parameter element s of e that is not

genuine. Now for each ei ∈ exprs−(e) we can define si = πf(ei)(s). Since s 6∈ GF ′
e (where GF ′

e denotes
the set of genuine compound terms of the operands of e) we are sure that for at least one i it holds:
si 6∈ SF ′

ei
. We can also be sure that ei is a minus-product operation. Our objective is to fix this

problem. This can be achieved in two different ways:

(a) revise si to an s′i such that s′i ∈ SF ′
ei

If we do this kind of revision to each “problematic” si then we will reach a s′ that belongs to
SF ′

ej
(if there is only one problematic si, then s′ = (s − si) ∪ s′i). So by following this approach

we will finally reach to an expression e′ that is well-formed. What is left to describe is how we
should revise each problematic si (this will be explained below).

(b) revise ei to an e′i such that si ∈ SF ′
e′i

Recall that ei is certainly a minus-product. Solving the problem requires enlarging the compound
terminology of ei, i.e. deleting or relaxing (narrowing) one or more parameter elements of ei.

16

One remark here is that the revision of ei will not cause any extra non genuine compound terms
(in the subsuming operations) because it will hold SF ′

ei
⊂ SF ′

e′i
.

It is evident that ei has at least one parameter element ni such that si ∈ NrF ′(ni). Specifically, the
previous propositions imply that:

• si certainly has a term t′′ ≤ b, and

• ni certainly has a term t′ ≥ a.

Policy (a) means revising si to an s′i such that s′i 6∈ NrF ′(ni).
Policy (b) means revising ni to an n′i such that si 6∈ NrF ′(n′i).
We can implement policy (a) by replacing in si the term t′′ by the term BrF

(1)(t
′), i.e.

s′i = si#NrF (b)#BrF
(1)(t

′)

We can implement policy (b) by replacing in ni the term t′ by the term NrF
(1)(t

′′), i.e.

n′i = ni#BrF (a)#NrF
(1)(t

′′)

It is evident, that s′i 6∈ NrF ′(ni) (in policy (a)) and that si 6∈ NrF ′(n′i) (in policy (b)).
For simplicity, above we have assumed that there is only one ni and that |BrF

(1)(t
′)| = |NrF

(1)(t
′′)| = 1.

Below we describe the algorithms for the general case.

Policy (a)
(1). n := {n ∈ N | si ¹F ′ n}
(2). X :=

⋃
ni∈n(ni ∩BrF (a))

(3). Y :=
⋃

x∈maximal≤(X) BrF
(1)(x)

(4). Z := {si#NrF (b)#{y} | y ∈ Y }
(5). Replace s by the set of compound terms {s#si#z | z ∈ Z}

Step (1) defines the set n comprising all parameter elements of N that are broader than si. Step (2)
computes the set X consisting of those terms of the elements in n that are broader than a (i.e. all “t′”
in our previous discussion). Let’s now discuss step (3). It is clear that the revised version of si should
not contain any term of

⋃
x∈X NrF ′(x). So the terms of si that belong to NrF ′(b) should be replaced

by terms that belong to
⋃

x∈X BrF ′(x) − X (note that
⋃

x∈X BrF ′(x) − X ⊆ T −⋃
x∈X NrF ′(x)).

Now according to the minimum distance criterion, the most preferable terms are those in the set Y
as defined in step (3). Step (4) computes the set Z of all revised versions of si, and finally, step (5)
replaces the original “problematic” parameter element s by one or more compound terms, specifically
by those derived after substituting the si part of s (recall that si ⊆ s) by the revised version(s) of si.

17

Policy (b)
(1). n := {n ∈ N | si ¹F ′ n}
(2). For each ni ∈ n do
(3). X := si ∩NrF (b)
(4). Y :=

⋃
x∈minimal≤(X) NrF

(1)(x)
(5). Z := {ni#BrF (a)#{y} | y ∈ Y }
(6). Replace ni by the set of compound terms Z

Again, step (1) defines the set n comprising all parameter elements of N that are broader than si. It
is this set of parameter elements that we should revise in order to reach a N ′ such that si 6∈ NrF ′(N ′).
For each ni in n, step (3) computes the set X comprising the terms of ni that are narrower than b (i.e.
all “t′′” in our previous discussion). All these terms have to be replaced. Furthermore, the revised
version of ni should not contain any term in

⋃
x∈X BrF ′(x). In the place of these terms, ni should

contain terms from the set
⋃

x∈X NrF ′(x)−X (note that
⋃

x∈X NrF ′(x)−X ⊆ T −⋃
x∈X BrF ′(x)).

According to the minimum distance criterion, the most preferable terms are those in the set Y as
defined in step (4). At the end of this algorithm we are sure that si 6∈ NrF ′(N ′)4.

Concerning the dilemma policy (a) versus policy(b), note that both of them result in revised param-
eters. Policy (a) favors revising the parameters of operations that are high in the parse tree, while
policy (b) prefers those that are low in the parse tree. From the perspective of the minimum distance
criterion, it can be shown that the “distance” of the resulting compound terminology is the closest
possible but this is true only for the operation whose parameters we decided to update. Concerning
the compound terminology of the entire expression we cannot say for sure which policy prevails, as
this depends on the size of all Sei . So the choice is left to the designer, or the system may adopt by
default one policy.
The reader could now see again the example of Figure 8. As another example consider the case shown

in Figure 10. The addition of the subsumption link b2 ≤ b1 makes the expression e not well-formed
as the compound term {a, b2, c} no longer belongs to the set of genuine compound terms of the plus-
product operation (A ªN B) ⊕P C. According to policy (a) and since BrF

(1)(b1) = {∅}, we actually
have to delete the term b2 from the compound term {a, b2, c}. Policy (b) is left to the reader.

N
e=(A B) C

P

P={ {a,b2, c} }

N={ {a,b1} }

add b2<b1

F

a c

F

a b1 b2 c

A B C

A B Cb1

b2
N={ {a,b1} }

P’={ {a, c} }

e’=(A B’) C
N P’

Figure 10: Addition of a subsumption relationship and well-formedness
In conclusion, Prop. 3 gave us an efficient method for checking whether condition (β=) can be

4This however does not guarantee that the elements of the revised parameter N ′ will not be revised again while
checking the genuineness of the subsequent parameter elements of the current or of a subsuming operation. So an
alternative policy, in which each parameter element ni is revised at most once, would be:
(1) for each ni ∈ N check all parameter elements of all subsuming operations, and
(2) collect the problematic parameter elements, and revise ni appropriately.

18

satisfied. When (β=) is impossible to satisfy, we gave two different methods for reaching a well-formed
expression that also satisfies a minimum distance criterion locally.

5.6 leaf addition, addLeaf(a, Par)

As mentioned in Sec. 3, this operation is analyzed to an operation add(a) and an operation add(a ≤ p)
for each p ∈ Par. Although we could satisfy (β=), here it is more reasonable to assume that the
designer would prefer a to “follow its parents”, i.e. the terms in Par.
Let’s first suppose that |Par| = 1, and assume that Par = {tp}. “Follow the parent” means that if a

valid compound term s contains tp, then s#tp#a should be valid too. For example, if we add the term
Crete under the term Greece (in the example of Figure 1), then {Feta, Crete} should be valid too.
So if |Par| = 1, it is clear what SF ′

e′ should be. Concerning expression revision and plus-products, note
that a compound term s that contains tp can be valid only due to a parameter p that contains a term
t′ ∈ NrF (tp). This implies that for each such parameter element (that contains a term t′ ∈ NrF (tp)),
we should add a new parameter where t′ is replaced by a. Consequently, reaching to the sought e′

requires revising each parameter P as follows:

P ′ = P ∪ { p#NrF (tp)#{a} | p ∈ P}

Let’s now consider the minus-product operations. Note that if s ∈ NrF (N) then s#tp#a ∈ NrF ′(N)
because a ∈ NrF ′(tp). Consequently, we don’t have to revise the N parameters of e.

Let’s now consider the case where |Par| > 1 and suppose that Par comprises two terms tp1 and
tp2. Let s1 and s2 be two compound terms that contain the same terms except that s1 contains
tp1 and s2 contains tp2. Consider now the case where s1 is valid, while s2 is not valid. In that
case the designer must decide about the validity of s1#tp1#a (similarly s2#tp2#a). For exam-
ple, suppose we add the (unrealistic) term RoquefortFeta under the terms Roquefort and Feta.
Should {RoquefortFeta,Greece} be valid or not? Note that {Roquefort, Greece} is invalid, while
{Feta, Greece} is valid. According to the minimum distance criterion, it is better to update e so as
s1#tp1#a to be invalid (e.g. {RoquefortFeta, Greece} is invalid). In the opposite case, i.e. if we
update the expression so as s1#tp1#a to be valid, then all compound terms that are broader than
s1#tp1#a would be valid (so s2 would no longer be invalid). The revision algorithm follows easily
from the above.

5.7 intermediate term addition, addIntermediate(a, Chi, Par).

As mentioned in Sec. 3, this operation is analyzed to an operation add(a) and an operation add(a ≤ p)
for each p ∈ Par and an operation add(c ≤ a) for each c ∈ Chi.
The discussion of addLeaf applies here as well, i.e. a should “follow” its parents (if all of them are

valid or all of them are invalid). In case their validity is not the same, and there is a conflict (as
described in addLeaf), a should follow the invalid compound terms.
Concerning the children Chi, if a compound term s contains a term c ∈ Chi and is valid, then

s#c#a should be valid too (according to the minimum distance criterion). Now in case all parents are
valid and all children are invalid, then s#c#a should be invalid, according to the minimum distance
criterion, but in practice the decision is up to the designer. For example, consider the case a new term
X is placed between Ingredients and Truffle. Whether {Greece, X} should be valid or not depends
on the meaning of X and the domain knowledge of the designer.

19

5.8 Epilogue

The results reported so far apply also for the case where e contains self-product operations. One
slight difference is that in case of an operation Add(a) applied on a facet Ti that participates in a
minus-self-product operation with parameter N , we should add to N a pair {a, t} for each maximal
element t of Ti.

One might wonder, if we could do any better (i.e. satisfy condition (β=), or reach to a compound
terminology closer to SF

e) by an expression e′ with structure (parse tree) different than e. The answer
is negative. At first note that previous work [21] has proved that if A is a subset of P(T) such that
Br(A) = A, then there is always an expression e such that Se = A. Moreover, we have shown that
this is true, for every possible parse tree of e (i.e. for every possible order of operations, operands and
parentheses). This means that set of compound terminologies that can be specified by an expression
with a given parse tree equals the set of compound terminologies that can be specified by an expression
of any parse tree. Thus, it is worthless to investigate whether a differently structured expression can
be closer to the original. So we can study the problem of expression revision, without wondering
whether the revised expression should have a different parse tree.

6 Similar Problems and Related Work

There is not any directly related work on the problem at hand because CTCA emerged relatively
recently and its distinctive characteristics (range-restricted closed world assumptions) differentiate it
from other logic-based languages and the corresponding literature on updates and revisions.
We could however draw some analogies to some well-known problems. For instance, we could consider

F as a database and CTCA as a query language, meaning that each expression e can be construed
as a query that returns a subset of P(T). Under this view, expression revision resembles the problem
of view definition revision in databases. The latter problem is formulated as follows: given a (e.g.
relational) database db and one view definition (named query) q, how we should revise q (to a q′) after
an update operation on db (that resulted in db′), so that to satisfy the following: ansdb(q) = ansdb′(q′).
Note that this is not the classical problem of updating databases through views, i.e. how to update
the database after an update upon the contents (tuples) of the view, i.e. the transition ans(q)′ → db′

(e.g. see [2, 8]), nor the problem of (incremental) updating the contents of a view after a database
update, i.e. the transition db′ → ans(q)′ (e.g. see [9, 10]). In our case we want to revise the definition
of the view, i.e. the focus is given on the transition db′ → q′.

From the perspective of KB (knowledge base) revision (e.g. see [3, 7]) we could say that CTCA
expression revision corresponds to a special case of KB revision. Under this point of view we could
consider the pair (F, e) as a KB from which other sentences (here, term conjunctions) can be inferred.
Let’s denote the later by Cons(F, e) (where Cons comes from Consequence) and write Cons(F, e) =
{s | (F, e) |= s} = SF

e , where “|=” is based on the semantics of CTCA. Consider now an update u
on F and let F ′ = u ◦ F . From this perspective, our objective is to revise e to an expression e′ such
that (F ′, e′) is well-formed and the difference between Cons(F, e) and Cons(F ′, e′) is minimal. Take
into account that all KB revision approaches also adopt a minimum change criterion, i.e. conform to
the new information but retain as much as possible the old knowledge. Notice that we do not focus
on the update F ′ = u ◦ F , although one can easily see that the definition of the primitive taxonomy
update operations tacitly adopt a minimum change criterion too5. In our case, we consider F ′ as

5In each taxonomy update operation, we retain as much of the old knowledge that can be retained while restricting
ourselves within the expressive power of the framework, i.e. within the expressive power of taxonomically organized
terms. For instance, in delete(term) we “retain” the transitively induced subsumption links of the precedent state of the

20

unquestionable and try to update/revice e according to our objectives. Another remark is that the
classical KB revision focuses on how to revise a KB when new contradictory information is obtained.
Of course, the notion of contradiction can be defined in several different ways. If we would like
to identify the most contradictory case, then this would be the operation Add(a ≤ b), because this
operation sometimes obliges us to update the parameters of operands out of the scope of the taxonomy
operation (even to obtain well-formedness).

At last we have to note that a representation of (F, e) in logic would not offer much, firstly because
CTCA cannot be directly expressed, and secondly because this would rather complicate the problem
and the notations. In addition, it is well-known [7, 28] that in KB revision there is no general method
that will “do the right thing” under all circumstances.

7 Concluding Remarks

This paper showed how we can revise a CTCA expression e after a taxonomy update and reach an
expression e′ that is both well-formed and whose semantics (specified compound terms) is as close as
possible to the original expression e before the update. Various cases were analyzed and the revising
algorithms were given.
In summary, the deletion of terms or subsumption relationships can be handled by extending the

P/N parameters (so as to recover the missing compound terms from the semantics of the original
expression). On the other hand, the addition of subsumption relationships cannot be handled always.
The reason is that since the semantics of the operations ⊕P /ªN are defined on the basis of the
transitive relation ¹ (which is derived by ≤), after the addition of a subsumption relationship we may
no longer be able to separate (from the semantics) compound terms that were previously separable
(i.e. compound terms which were not ¹-related before the addition of the subsumption link). We
saw that after such taxonomy updates, the resulting compound terminology may neither be subset
nor superset of the original compound terminology. This happens because the effects of adding a
subsumption relationship is different in ⊕P and ªN . Specifically, the compound terminologies defined
by ⊕P operations become larger, while those defined by ªN operations become smaller. Now the
combination of ⊕P and ªN operations leads to compound terminologies which are neither larger nor
smaller than the original one. In such cases, we saw how we can revise e to an e′ that is well-formed
with respect to F ′. Two policies were identified. For each of them we gave a revision algorithm that
satisfies the minimum distance criterion locally (i.e. in the operation’s context). The above results
are summarized in Table 6.

uF relationship between SF
e and SF ′

e′ Notes
rename(a, a′) (β=) up to term renaming
delete(a) (β) SF ′

e′ = SF
e − {s | a ∈ s}, thus SF ′

e′ ⊆ SF
e

add(a) ∼ (β=) SF ′
e′ = SF

e ∪ {{a}}
delete(b ≤ a) (β=) SF ′

e′ = SF
e

add(b ≤ a) (β=), or (β), or (γ), or (δ), or none several cases

Table 6: Synopsis of Expression Revision

This work can significantly aid the application of faceted classification and CTCA in real world appli-
cations where updates are very frequent. Without such a service, designers are obliged to reformulate
their expressions after taxonomy updates.

taxonomy (old knowledge).

21

An issue for further research is to study the problem of expression revision after a sequence of
taxonomy updates. In this case, F ′ would be the result of applying a sequence of updates U on F .
Instead of deriving one revised e after each update in U , a more efficient approach is to consider and
preprocess the entire set of updates U , because we could eliminate the “balancing” update operations
(e.g. delete(a) vs. add(a), delete(a ≤ b) vs. add(a ≤ b), etc) that may be contained in U . This
would allow managing efficiently “long (taxonomy update) transactions” which are quite common in
design applications.

Acknowledgements
Many thanks to Anastasia Analyti for proof reading the paper (twice) and to Nicolas Spyratos for providing
me with some useful bibliographic references.

References

[1] “XFML: eXchangeable Faceted Metadata Language”. http://www.xfml.org.

[2] F. Bancilhon and N. Spyratos. “Update Semantics of Relational Views”. ACM Transactions on Database Systems,
December 1981.

[3] Mukesh Dalal. “Investigations Into a Theory of Knolwedge Base Revision”. In Conference on Artificial Intelligence,
AAAI-88, pages 475–479, St. Paul, Minesota, August 1988.

[4] Edwin Diday. “An Introduction to Symbolic Data Analysis and the Sodas Software”. Journal of Symbolic Data
Analysis, 0(0), 2002. ISSN 1723-5081.

[5] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. “Reasoning in Description Logics”. In Gerhard Brewka,
editor, Principles of Knowledge Representation, chapter 1, pages 191–236. CSLI Publications, 1996.

[6] Elizabeth B. Duncan. “A Faceted Approach to Hypertext”. In Ray McAleese, editor, HYPERTEXT: theory into
practice, BSP, pages 157–163, 1989.

[7] Thomas Eiter and Georg Gottlob. On the complexity of propositional knowledge base revision, updates, and
counterfactuals. In Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 261–273, 1992.

[8] Arthur M. Keller. “The Role of Semantics in Translating View Updates”. IEEE Computer, pages 63–73, January
1986.

[9] D. Laurent, J. Lechtenberger, N. Spyratos, and G. Vossen. “Monotonic Complements for Independent Data Ware-
houses”. VLDB Journal, 10(4):295–315, December 2001.

[10] Jens Lechtenberger and Gottfried Vossen. “On the Computation of Relational View Complements”. In Proceedings
of PODS 2003, pages 142–149, Madison, Wisconsin, USA, June 2002.

[11] P. H. Lindsay and D. A. Norman. Human Information Processing. Academic press, New York, 1977.

[12] Amanda Maple. ”Faceted Access: A Review of the Literature”, 1995.
http://theme.music.indiana.edu/tech s/mla/facacc.rev.

[13] Ruben Prieto-Diaz. “Classification of Reusable Modules”. In Software Reusability. Volume I, chapter 4, pages
99–123. acm press, 1989.

[14] Ruben Prieto-Diaz. “Implementing Faceted Classification for Software Reuse”. Communications of the ACM,
34(5):88–97, 1991.

[15] U. Priss and E. Jacob. “Utilizing Faceted Structures for Information Systems Design”. In Proceedings of the ASIS
Annual Conf. on Knowledge: Creation, Organization, and Use (ASIS’99), October 1999.

[16] Uta Priss. “Faceted Knowledge Representation”. Electronic Transactions on Artificial Intelligence, 4:21–33, 2000.
(Available at http://www.ep.liu.se/ej/etai/2000/002/).

[17] S. R. Ranganathan. “The Colon Classification”. In Susan Artandi, editor, Vol IV of the Rutgers Series on Systems
for the Intellectual Organization of Information. New Brunswick, NJ: Graduate School of Library Science, Rutgers
University, 1965.

[18] Kenneth A. Ross and Angel Janevski. “Querying Faceted Databases”. In Procs of the 2nd Intern. Workshop on
Semantic Web and Databases, SWDB’2004 (satellite of VLDB’04), Toronto, Canada, August 2004.

22

[19] Yannis Tzitzikas. “An Algebraic Method for Compressing Symbolic Data Tables”. Journal of Intelligent Data
Analysis (IDA). (accepted for publication).

[20] Yannis Tzitzikas. “An Algebraic Method for Compressing Very Large Symbolic Data Tables”. In Procs. of the
Workshop on Symbolic and Spatial Data Analysis of ECML/PKDD 2004, Pisa, Italy, September 2004.

[21] Yannis Tzitzikas and Anastasia Analyti. “Mining the Meaningful Term Conjunctions from Materialized Faceted
Taxonomies: Algorithms and Complexity”. Knowledge and Information Systems Journal (accepted for publication).

[22] Yannis Tzitzikas and Anastasia Analyti. “Mining the Meaningful Compound Terms from Materialized Faceted
Taxonomies”. In Procs. of the 3rd Intern. Conference on Ontologies, Databases and Applications of Semantics for
Large Scale Information Systems, ODBASE’2004, pages 873–890, Larnaca, Cyprus, October 2004.

[23] Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos. “The Semantics of the Compound Term Composi-
tion Algebra”. In Procs. of the 2nd Intern. Conference on Ontologies, Databases and Applications of Semantics,
ODBASE’2003, pages 970–985, Catania, Sicily, Italy, November 2003.

[24] Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos. “Compound Term Composition Algebra: The Seman-
tics”. LNCS Journal on Data Semantics, 2:58–84, 2005.

[25] Yannis Tzitzikas, Anastasia Analyti, Nicolas Spyratos, and Panos Constantopoulos. “An Algebraic Approach for
Specifying Compound Terms in Faceted Taxonomies”. In Information Modelling and Knowledge Bases XV, 13th
European-Japanese Conference on Information Modelling and Knowledge Bases, EJC’03, pages 67–87. IOS Press,
2004.

[26] Yannis Tzitzikas, Raimo Launonen, Mika Hakkarainen, Pekka Kohonen, Tero Leppanen, Esko Simpanen, Hannu
Tornroos, Pekka Uusitalo, and Pentti Vanska. “FASTAXON: A system for FAST (and Faceted) TAXONomy
design.”. In Proceedings of 23th Int. Conf. on Conceptual Modeling, ER’2004, Shanghai, China, November 2004.
(an on-line demo is available at http://fastaxon.erve.vtt.fi/).

[27] B. C. Vickery. “Knowledge Representation: A Brief Review”. Journal of Documentation, 42(3):145–159, 1986.

[28] M. Winslett. Updating Logical Databases. Cambridge University Press, 1990.

23

A An example of CTCA

Valid

Feta, Greece Feta, Europe
Feta, Earth Cheese, Greece
Cheese, Europe Cheese, Earth
Ingredients, Greece Ingredients, Europe
Ingredients, Earth Roquefort, France
Roquefort, Europe Roquefort, Earth
Cheese, France Ingredients, France
Truffle, France Truffle, Europe
Truffle, Earth Truffle, Italy
Cheese, Italy Ingredients, Italy
Cheese, Japan Cheese, Asia
Ingredients, Japan Ingredients, Asia
Feta, Oven Feta, Wok
Feta, C.Style Roquefort, Oven
Roquefort, Wok Roquefort, C.Style
Cheese, Oven Cheese, Wok
Cheese, C.Style Truffle, Oven
Truffle, Wok Truffle, C.Style
Ingredients, Oven Ingredients, Wok
Ingredients, C.Style Greece, Oven
Greece, C.Style Italy, Oven
Italy, C.Style France, Oven
France, C.Style Europe, Oven
Europe, C.Style Earth, Oven
Earth, Wok Earth, C.Style
Japan, Oven Japan, Wok
Japan, C.Style Asia, Oven
Asia, Wok Asia, C.Style
Feta, Greece, Oven Feta, Greece, C.Style
Feta, Europe, Oven Feta, Europe, C.Style
Feta, Earth, Oven Feta, Earth, Wok
Feta, Earth, C.Style Cheese, Greece, Oven
Cheese, Greece, C.Style Cheese, Europe, Oven
Cheese, Europe, C.Style Cheese, Earth, Oven
Cheese, Earth, Wok Cheese, Earth, C.Style
Ingredients, Greece, Oven Ingredients, Greece, C.Style
Ingredients, Europe, Oven Ingredients, Europe, C.Style
Ingredients, Earth, Oven Ingredients, Earth, Wok
Ingredients, Earth, C.Style Roquefort, France, Oven
Roquefort, France, C.Style Roquefort, Europe, Oven
Roquefort, Europe, C.Style Roquefort, Earth, Oven
Roquefort, Earth, Wok Roquefort, Earth, C.Style
Cheese, France, Oven Cheese, France, C.Style
Ingredients, France, Oven Ingredients, France, C.Style
Truffle, France, Oven Truffle, France, C.Style
Truffle, Europe, Oven Truffle, Europe, C.Style
Truffle, Earth, Oven Truffle, Earth, Wok
Truffle, Earth, C.Style Truffle, Italy, Oven
Truffle, Italy, C.Style Cheese, Italy, Oven
Cheese, Italy, C.Style Ingredients, Italy, Oven
Ingredients, Italy, C.Style Cheese, Japan, Oven
Cheese, Japan, Wok Cheese, Japan, C.Style
Cheese, Asia, Oven Cheese, Asia, Wok
Cheese, Asia, C.Style Ingredients, Japan, Oven
Ingredients, Japan, Wok Ingredients, Japan, C.Style
Ingredients, Asia, Oven Ingredients, Asia, Wok
Ingredients, Asia, C.Style

Invalid

Feta, Italy Feta, France
Feta, Japan Feta, Asia
Roquefort, Greece Roquefort, Italy
Roquefort, Japan Roquefort, Asia
Truffle, Greece Truffle, Japan
Truffle, Asia Europe, Wok
Greece, Wok Italy, Wok
France, Wok Feta, Greece, Wok
Feta, Europe, Wok Cheese, Greece, Wok
Cheese, Europe, Wok Ingredients, Greece, Wok
Ingredients, Europe, Wok Roquefort, France, Wok
Roquefort, Europe, Wok Cheese, France, Wok
Truffle, France, Wok Truffle, Europe, Wok
Truffle, Italy, Wok Cheese, Italy, Wok
Ingredients, Italy, Wok Feta, Italy, Oven
Feta, Italy, Wok Feta, Italy, C.Style
Feta, France, Oven Feta, France, Wok
Feta, France, C.Style Feta, Japan, Oven
Feta, Japan, Wok Feta, Japan, C.Style
Feta, Asia, Oven Feta, Asia, Wok
Feta, Asia, C.Style Roquefort, Greece, Oven
Roquefort, Greece, Wok Roquefort, Greece, C.Style
Roquefort, Italy, Oven Roquefort, Italy, Wok
Roquefort, Italy, C.Style Roquefort, Japan, Oven
Roquefort, Japan, Wok Roquefort, Japan, C.Style
Roquefort, Asia, Oven Roquefort, Asia, Wok
Roquefort, Asia, C.Style Truffle, Greece, Oven
Truffle, Greece, Wok Truffle, Greece, C.Style
Truffle, Japan, Oven Truffle, Japan, Wok
Truffle, Japan, C.Style Truffle, Asia, Oven
Truffle, Asia, Wok Truffle, Asia, C.Style

Table 7: The valid and invalid compound terms of the example of Section 1
As the facet Ingredients has 5 terms, the facet LocationOfOrigin has 7 terms, and the facet CookingStyle
has 3 terms, the number of compound terms that contain at most 1 term from each facet is 6*8*4 = 192. This
table contains 113 valid and 62 invalid compound terms, thus 175 in total. By adding the (5+7+3=15) singletons
(which were omitted from the column of valid) and the empty set we reach the 192 compound terms.

24

