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1 Introduction

Transactional memory (TM) [20, 25, 33] allows concurrent processes to execute operations on data
items within atomic blocks of instructions, called transactions. The paradigm is appealing for its sim-
plicity but implementing it efficiently is challenging. Ideally the TM system should not introduce any
contention between transactions beyond that inherently due to the actual code of the transactions.
In other words, if two transactions access disjoint sets of data items, then none of these transactions
should delay the other one, i.e., these transactions should not contend on any base object. This re-
quirement has been called strict disjoint-access-parallelism. Base objects are low-level objects, which
provide atomic primitives like read/write, load linked/store conditional, compare-and-swap, used to
implement the TM system. Two transactions contend on some base object if both access that object
during their executions and one of them performs a non-trivial operation on that object, i.e. an
operation which updates its state.

Disjoint-access-parallelism is met in the literature [2, 8, 15, 19, 26, 30] in many flavors (see the
discussion in related work). Stronger versions of it, like strict disjoint-access-parallelism, result in
more parallelism (and promote scalability) and therefore they are highly desirable when designing TM
implementations: strict disjoint-access-parallelism is indeed ensured by blocking TM algorithms like
TL [13]. Nevertheless, a transaction that locks a data item and gets paged out might block all other
transactions for a long amount of time. One might require a liveness property that prevents such
blocking. It was shown however in [18] that a TM cannot ensure strict disjoint-access-parallelism if it
also needs to ensure serializability [29] and obstruction-freedom [16, 14]. Obstruction-freedom ensures
that a transaction can be aborted only when step contention is encountered during the course of its
execution. Obstruction-freedom is weaker than lock-freedom or wait-freedom. It allows for designing
simpler TM algorithms and therefore it has been given special attention in TM computing [23].

In this paper, we study the following question: can we ensure strict disjoint-access-parallelism and
obstruction freedom if we weaken safety? In other words, is consistency indeed a major factor against
scalability? We focus on snapshot isolation [10], a safety property which requires that transactions
should be executed as if every read operation reads from some snapshot of the memory that was
taken when the transaction started. Snapshot isolation is an appealing property for TM computing
since it provides the potential to increase throughput for workloads with long transactions [31]. If
the set of transactions is restricted to those that do not read data items that have previously written,
snapshot isolation is a weaker property than strict serializability.

We prove that the answer is still negative. Namely, it is impossible to implement a TM which is
strict disjoint-access-parallel and satisfies obstruction-freedom and snapshot isolation. To make our
impossibility result stronger, we consider, for its proof, a weak snapshot isolation property which
requires only that each transaction reads from some consistent snapshot of the memory taken when
it starts, thus ignoring the extra constraint (met in the literature [10, 31] for snapshot isolation) that
from two concurrent transactions writing to the same data item, only one can commit. Moreover,
the result still holds if the system provides primitives that atomically access any set of (up to) k base
objects, where k is any integer.

The proof of our impossibility result is based on indistinguishability arguments. The same is true
for the impossibility result in [18] which however holds for serializable TM algorithms and has a less
intricate proof. Specifically, our proof employs several executions and a big number of transactions
(up to (k + 2)(k + 1)2 + k + 3 transactions), which access a big number of data items in total in
contrast to the proof in [18] which presents a simple execution involving only three transactions,
one of which accessing four data items and the other two accessing two data items each. The main
difficulty comes from the fact that the read operations of a transaction do not have to be serialized
at the same point as its write operations. So, it is much harder to construct an execution which
violates snapshot isolation. We end up constructing two legal executions, chosen from a big set of
executions, where a read-only transaction must return the same values for the data items that it
reads. We then prove that one of these two executions violates snapshot isolation.
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We finally show how to circumvent the impossibility result for read-only transactions: mainly we
show how we can get a simplified version of DSTM [14], called SI-DSTM, which satisfies a strong ver-
sion of snapshot isolation, obstruction-freedom, and the following weaker disjoint-access-parallelism
requirement: two operations (executed by concurrent transactions) on different data items, one of
which is a read operation, never contend on the same base object, and two write operations on
different data items contend on the same base object only if there is a chain of transactions starting
with the transaction that performs one of these write operations and ending with the transaction
that performs the other, such that every two consecutive transactions in the chain conflict, i.e.,
they access a common data item. We call this property that is satisfied by write transactions
weak disjoint-access-parallelism. DSTM satisfies weak disjoint-access-parallelism for all transactions,
while SI-DSTM satisfies strict disjoint-access-parallelism for read-only transactions and weak disjoint-
access-parallelism for write transactions. SI-DSTM is significantly simpler than the original DSTM
and exhibits some performance benefits in comparison to DSTM. Specifically, no read operation
can ever abort an update transaction (as is the case in DSTM) and thus SI-DSTM achieves better
throughput. Also, read and write operations interfere less (in accessing base objects) than in the
original DSTM, so incurring less contention.

Related Work. Disjoint-access-parallelism was introduced in [26]. Later variants [2, 8, 15] employed
the concept of a conflict graph. A conflict graph is a graph whose vertices represent transactions (or
operations) performed in an execution α and an edge exists between two nodes if the corresponding
transactions (operations) access the same data item in α. In most of these definitions, disjoint-
access-parallelism requires any two transactions to contend on a base object only if there is a path in
the conflict graph of the minimal execution interval that contains both transactions such that every
two consecutive transactions in the path conflict. Different variants are met in the literature with
the names disjoint-access-parallelism or weak disjoint-access-parallelism (most of them use different
properties to restrict access to a base object by two processes performing a transaction/operation).
In [2, 4, 6, 26], additional constraints are placed on the length of the path in the conflict graph,
resulting on what is known as d-local contention property, where d is the upper bound on the length
of the path. In [26], where disjoint-access-parallelism originally appeared, an additional constraint
on the step complexity of each operation is provided in the definition.

Attiya et al. [8] proved that no (weak) disjoint-access-parallel TM implementation can support
wait-free and invisible read-only transactions; a read-only transaction does not perform writes on
data items and an invisible transaction does not perform non-trivial operations on base objects when
reading data items. The variant of disjoint-access-parallelism considered in [8] ensures that processes
executing two transactions concurrently contend on a base object only if there is a path between
the two transactions in the conflict graph. Although our impossibility result is proved for a stronger
disjoint-access-parallelism property, it considers a much weaker progress property, i.e. obstruction
freedom, and holds even for TM algorithms where read-only transactions are visible. The proof of
the impossibility result in [8] employs indistinguishability arguments based on flippable executions [5]
which is significantly different from the indistinguishability arguments used here.

Recent work [11] has proved that, if the TM algorithm does not have access to the code of
each transaction, a property similar to wait-freedom, called local progress, cannot be ensured by any
TM algorithm. In [15], it is proved that wait-freedom cannot be achieved even if this restriction is
abandoned (given that each time a transaction aborts it restarts its execution, as it is usually the case
in TM computing) if even a weak version of disjoint-access-parallelism, called feeble disjoint-access-
parallelism must be ensured. Thus, to achieve even weaker forms of disjoint-access-parallelism, one
must consider weaker progress properties as we do in this paper.

Pelerman et al. [30] proved that no TM can be strictly serializable, (weak) disjoint-access-
parallelism, and MV-permissive. The impossibility result holds under the assumptions that the
TM does not have access to the code of transactions and the code for reading and writing data
items terminates within a finite number of steps. For disjoint-access-parallelism, Pelerman et al. [30]
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considers the same variant as in [8]. A TM implementation satisfies MV-permissiveness if a trans-
action aborts only if it is a write transaction that conflicts with another write transaction. This
impossibility result can be beaten [7] if the stated assumptions do not hold. Our impossibility result
holds if the TM ensures only snapshot isolation and even if it is MV-permissive; we do not make any
assumptions to prove our result.

Several software transactional memory implementations [33, 13, 17, 23, 27, 34] are disjoint-access-
parallel: TL [13] ensures strict disjoint-access-parallelism; the rest satisfy weaker forms of disjoint-
access-parallelism [8] and among them OSTM [17] is lock-free. The TM in [33] is also lock-free but it
has been designed for static transactions that access a pre-determined set of memory locations. Lin-
earizable universal constructions [21, 22] which ensure weaker versions of disjoint-access-parallelism
than that provided by SI-DSTM are presented in [1, 9, 15, 35]. Barnes [9] implementation is lock-free.
The universal construction in [15] ensures wait-freedom when applied to objects that have a bound
on the number of data items accessed by each operation they support, and lock-freedom in other
cases. Disjoint-access-parallel wait-free universal constructions when each operation accesses a fixed
number of predetermined memory locations are provided in [2, 35].

Snapshot isolation was originally introduced as a safety property in the database world [10, 28]
to increase throughput for long read-only transactions. In the concept of TM, snapshot isolation has
been studied in [3, 12, 31, 32]. An STM algorithm, called SI-STM, which ensures snapshot isolation is
presented in [31]. SI-STM employs a global clock mechanism and therefore, it is not disjoint-access-
parallel. In [12], static analysis techniques to detect, at compile time, consistency anomalies that
may arise when the TM algorithm satisfies snapshot isolation or other weak safety properties are
presented. Snapshot isolation on TM for message-passing systems has been studied in [3].

2 Preliminaries

We consider an asynchronous system with n processes which communicate by accessing shared base
objects. A base object provides atomic primitives, to access or modify its state. The system may
support various types of base objects like read/write(R/W) registers, load-link/store-conditional
(LL/SC), compare-and-swap (CAS), fetch-and-add (F&A) etc. A primitive which can change the
state of an object is called non-trivial; otherwise, it is called trivial.

Transactional memory (TM) employs transactions to execute pieces of sequential code in a con-
current environment. Each piece of code contains accesses to pieces of data, called data items, that
may to be accessed by several processes when the code is executed concurrently; so TM should
synchronize accesses to data items. To achieve this, a TM algorithm usually provides a shared repre-
sentation for each data item by using base objects. A transaction may either commit, in which case
all its updates become visible to other transactions, or abort, in which case its updates are discarded.

A TM algorithm provides implementations for the routines ReadDI and WriteDI which are called
to read or write data items, respectively. TM algorithms that cope with dynamic data, should also
provide an implementation for createDI which is called to create new data items. In addition, a
TM algorithm provides implementations for the routines BeginTr, CommitTr, and AbortTr, which
are called when a transaction starts its execution, and when it tries to commit or abort, respectively.
Each time a transaction calls one of these routines we say that it invokes a transactional operation;
when the execution of the routine completes, a response is returned. We denote the invocation of
CommitTr by a transaction T as commitT ; the response to commitT can be either CT (commit)
or AT (abort). We denote by (i) x.write(v) the invocation of WriteDI for data item x with value
v; it returns ok if the write was successful or AT if the transaction that invoked it has to abort,
(ii) x.read() the invocation of ReadDI for data item x; it returns a value for x if the operation was
successful or AT if the transaction that invoked it has to abort. Also we denote by beginT the
invocation of BeginTr by T .

A configuration is a vector that, for each process and for each base object, contains a component
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storing the state of this process or base object. In an initial configuration, processes and base objects
are in initial states. A step of a process consists of a single primitive on some base object, the response
to that primitive, and zero or more local operations that are performed after the access and which
may cause the internal state of the process to change; each step is executed atomically. An execution
α is a sequence of steps. An execution is legal starting from a configuration C if the sequence of steps
performed by each process follows the algorithm for that process (starting from its state in C) and,
for each base object, the responses to the operations performed on the object are in accordance with
its specification (and the state of the object at configuration C). An execution interval of execution
α is a subsequence of consecutive steps from α. We use α · β to denote the execution α immediately
followed by the execution β and say that α is a prefix of α · β. An execution is solo if every step is
performed by the same process. Two executions α1 and α2 starting from configurations C1 and C2,
respectively, are indistinguishable to some process p, if the state of p is the same in C1 and C2, and
the sequence of steps performed by p (and thus also the responses it receives) are the same during
both executions.

Fix an execution α in which a transaction T is executed. The execution interval of T in α is the
subsequence of consecutive steps of α starting with the first step executed by any of the operations
invoked by T and ending with the last such step. A TM algorithm is obstruction-free if a transaction
T can be aborted only when other processes take steps during the execution interval of T .

A history H is a sequence of invocations of transactional operations and their responses. Given
an execution α, we denote by Hα the sequence of invocations and responses performed by the
transactions executed in α. We denote by H|T the longest subsequence of H consisting only of
invocations and responses of a transaction T . Transaction T is in history H if H|T is not empty.
History H is well-formed if for every transaction T in H the following holds: (i) H|T is a sequence
of alternating invocations and responses starting with BeginTr() followed by ok, (ii) each read
invocation in H | T is followed either by a value or by AT , (iii) each write invocation in H | T is
followed either by an ok response or by AT , (iv) each invocation of CommitTr() in H | T is followed
by CT or AT , (v) each invocation of AbortTr() in H | T is followed by AT , (vi) no invocation follows
by T after CT or AT in H | T . Herein, we consider only well-formed histories.

We say that T commits (aborts) in H if H|T ends with CT (AT , respectively). If T does not
commit or abort in H, then T is live in H. H is complete if it does not contain any live transactions.
If H|T ends with commitT , then T is commit-pending. Transaction T1 precedes transaction T2 in
H, if T1 is not live in H and AT1 or CT1 precedes the first invocation of T2 in H. If T1 does not
precede T2 in H and T2 does not precede T1 in H, then T1 and T2 are concurrent in H. A history
H is sequential if no two transactions are concurrent in H.

Transaction T is legal in a sequential history H, if every read invocation x.read(), whose response
is not AT , returns a value v such that: (i) if there exists an invocation of x.write(∗) by a committed
transaction or by T itself preceding x.read(), then v is the argument of the last such x.write(∗)
invocation; (ii) otherwise, v is the initial value of x. A complete sequential history H is legal if every
transaction in H is legal.

We say that two transactions conflict in an execution α, if they both invoke a transactional
operation on a common data item in Hα. The conflict graph of an execution interval I of α is an
undirected graph whose vertices represent transactions that take steps in I and an edge connects
two transactions T1 and T2 iff T1 conflicts with T2 in α. We say that two executions contend on a
base object o if they both contain a primitive on o and one of these primitives is non-trivial.

Denote by α | T the subsequence of α consisting of all steps executed by T . A TM implementation
I is strict disjoint-access-parallel [18], if in each execution α of I, and for every two transactions T1
and T2 executed in α, α | T1 and α | T2 contend on some base object, only if there is an edge between
T1 and T2 in the conflict graph of α. A TM implementation I is weak disjoint-access-parallel, if in
each execution α of I, and for every two transactions T1 and T2 executed in α, α | T1 and α|T2
contend on some base object, only if there is a path between T1 and T2 in the conflict graph of the
minimal execution interval of α containing α | T1 and α | T2.
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Let T be a committed or commit-pending transaction in a history H. A read operation x.read()
on some data item x by T is global if T has not invoked x.write(∗) before invoking x.read(). Let
T | readg be the longest subsequence of H | T consisting only of the global read invocations (and any
matching responses) and T | other be the subsequence H | T − T | readg, i.e. T | other consists of
all invocations performed by T (and any matching responses) other than those comprising T | readg.
Let λ be the empty execution. Then we define Tg and To in the following way:

• Tg = beginTg · ok · T | readg · commitTg · CTg if T | readg 6= λ, and Tg = λ otherwise, and

• To = beginTo · ok · T | other · commitTo · CTo if T | other 6= λ, and To = λ otherwise.

Definition 2.1 (Snapshot Isolation). An execution α satisfies snapshot isolation, if for every com-
mitted transaction T (and for some of the commit-pending transactions) in α it is possible to insert
a read serialization point ∗T,g and a write serialization point ∗T,o such that: (i) ∗T,g precedes ∗T,o,
(ii) both ∗T,g and ∗T,o are inserted within the execution interval of T , and (iii) if σα is the sequence
defined by these serialization points, in order, and Hσα is the history we get by replacing each ∗T,g
with Tg and each ∗T,o with To in σα, then Hσα is legal.

We note that this variant of snapshot isolation is strictly weaker than strict serializability [29] and
thus also than opacity [19]. Roughly speaking, for every history H that satisfies strict serializability
and any committed transaction T in H, both ∗T,g and ∗T,o can be inserted in the place of the
serialization point for T .

Now, let T | read be the longest subsequence of H | T consisting only of read invocations and
their corresponding responses and T | write be the longest subsequence of H | T consisting only of
write invocations and their corresponding responses. Then we define Tr and Tw in the following way:

• Tr = beginTr · ok · T | read · commitTr · CTr if T | read 6= λ, and Tr = λ otherwise, and

• Tw = beginTw · ok · T | write · commitTw · CTw if T | write 6= λ, and Tw = λ otherwise.

Definition 2.2 (R/W-independent Snapshot Isolation). An execution α satisfies R/W-independent
snapshot isolation, if for every committed transaction T (and for some of the commit-pending trans-
actions) in α it is possible to insert a read serialization point ∗T,r and a write serialization point ∗T,w
such that: (i) ∗T,r precedes ∗T,w, (ii) both ∗T,r and ∗T,w are inserted within the execution interval
of T , and (iii) if σα is the sequence defined by these serialization points, in order, and Hσα is the
history we get by replacing each ∗T,r with Tr and each ∗T,w with Tw in σα, then Hσα is legal.

R/W-independent snapshot isolation is incomparable to serializability [29], strict serializabil-
ity [29], and opacity [19]. For example, a solo execution of some transaction which updates a data
item and then reads the new value of that data item satisfies serializability, but does not satisfy
snapshot isolation. And a solo execution of some transaction which updates a data item and then
reads the old value of that data item satisfies snapshot isolation, but does not satisfy serializability.

We remark that snapshot isolation and R/W-independent snapshot isolation, as defined above,
do not satisfy prefix-closure. However, we can make them prefix-close if we require each prefix of α
to satisfy the stated properties.

3 Impossibility Result

In this section we present our impossibility result i.e. we prove that it is impossible to construct
a STM satisfying obstruction-freedom, strict disjoint-access-parallelism and any of the variants of
snapshot isolation defined earlier: snapshot isolation or R/W-independent snapshot isolation. As
it is shown later, the proof employs transactions that only read or only write. In this case, the
definitions of snapshot isolation and R/W-independent snapshot isolation are merely identical.
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3.1 Simple Case

For simplicity, we first provide the proof for the restricted case where a primitive can access at most
2 base objects. The proof for the general case when primitives can access k ≥ 1 base objects is a
natural generalization of this proof and is provided later.

Theorem 3.1. No obstruction-free STM can ensure both snapshot isolation and strict disjoint-
access-parallelism. This holds even if the system provides primitives that can atomically access 2
base objects.

Proof. Suppose there is an obstruction-free STM which ensures both snapshot isolation and strict
disjoint-access-parallelism. We start by describing the general strategy of the proof. For the proof we
will employ some transactions, all executed by distinct processes: (1) for each 1 ≤ i ≤ 3, transaction
T i1 (executed by pi1) writes value 1 to ai1, . . . , a

i
7, b

i
1, b

i
2, b

i
3, di; (2) for each 1 ≤ i ≤ 7, transaction T i2

(executed by pi2) writes value 2 to a1i , a
2
i , a

3
i , c

i
1, c

i
2, c

i
3, ei; (3) for each 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3,

transaction T i,j3 reads from bij ; (4) for each 1 ≤ i ≤ 7 and 1 ≤ j ≤ 3, transaction T i,j4 reads from cij .

We will construct two executions: α5 = αx2 · s
y
1 ·β

z1
3 ·β

z1
4 · sx2 ·β5 and α′5 = αx2 · sx2 · γ

z2
3 · γ

z2
4 · s

y
1 · γ5,

where x and y, 1 ≤ x ≤ 7, 1 ≤ y ≤ 3, are indices to be determined later that indicate transactions
T y1 and T x2 which have some desired properties among the sets of T i1, 1 ≤ i ≤ 3, and T j2 , 1 ≤ j ≤ 7.
Similarly, indices z1 and z2, 1 ≤ z1, z2 ≤ 3, are to be determined later. Roughly speaking, (1) αx2
is an execution where each of the processes p11, p

2
1, p

3
1, p

x
2 executes solo a part of the transactions

T 1
1 , T

2
1 , T

3
1 , T

x
2 , respectively, (2) βz13 , βz14 , γz23 , and γz24 are solo executions of transactions T y,z13 , T x,z14 ,

T y,z23 , and T x,z24 , respectively, (3) finally, β5 and γ5 are solo executions of a new transaction T5 by
distinct process p5 which reads the data items ayx, dy, ex. We will prove that (1) α5 and α′5 are legal
executions, (2) executions β5 and γ5 are indistinguishable to process p5, and (3) snapshot isolation
is violated in either β5 or γ5. The proof is structured in steps.

Step 1. Definition of executions αi1, configurations Ci1 and steps si1. For 0 ≤ i ≤ 3 we will
inductively define a sequence of executions αi1, steps si1, and configurations Ci1. Let C0

1 = C0

(i.e., C0
1 is an initial configuration), α0

1 be an empty execution and s01 be an empty step. Fix any

1 ≤ i ≤ 3 and assume that ∀j, 0 ≤ j < i, αj1, C
j
1 and sj1 have been defined. Let transaction T i1 be

executed solo (by pi1) from configuration Ci−11 . Since pi1 runs solo, obstruction-freedom implies that

T i1 eventually commits. Let C
′i
1 be the configuration resulting from the execution of the last step

of T i1. If transaction T i,13 is executed solo from C
′i
1 , then in the resulting execution, T i,13 reads the

value 1 written by T i1 for bi1, otherwise snapshot isolation is violated. If transaction T i,13 is executed

solo from configuration Ci−11 , then in the resulting execution, T i,13 reads 0 for bi1, otherwise snapshot
isolation is violated. Thus, there exists a step si1 in the solo execution of T i1 from Ci−11 , resulting in

a configuration C
′′i
1 , such that (1) if T i,13 is executed solo from the configuration just before si1, then

in the resulting execution, T i,13 reads 0 for bi1; (2) and if T i,13 is executed solo from C
′′i
1 , then in the

resulting execution T i,13 reads the value written by T i1 for bi1. (If there are more than one such steps,
let si1 be the first.) Denote by βi1 the execution where T i1 is executed solo from Ci−11 until pi1 is poised
to execute si1. Let αi1 = αi−11 · βi1 and let Ci1 be the configuration that results from αi1.

Step 2. Definition of executions αi2, configurations Ci2 and steps si2. Fix any 1 ≤ i ≤ 7.
Let transaction T i2 be executed solo (by pi2) from configuration C3

1 . Since pi2 runs solo, obstruction-

freedom implies that T i2 eventually commits. Let C
′i
2 be the configuration resulting from the execution

of the last step of T i2. If transaction T i,14 is executed solo from C
′i
2 , then in the resulting execution,

T i,14 reads the value 2 written by T i2 for ci1. If transaction T i,14 is executed solo from configuration

C3
1 , then in the resulting execution, T i,14 reads 0 for ci1. Thus, there exists a step si2 in the solo

execution of T i2 from C3
1 , resulting in a configuration C

′′i
2 , such that (1) if T i,14 is executed solo from

the configuration just before si2, then in the resulting execution, T i,14 reads 0 for ci1; (2) and if T i,14

is executed solo from C
′′i
2 , then in the resulting execution T i,14 reads the value 2 written by T i2 for
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β11

T 1
1 runs solo un-

til it’s poised to
execute s11

β31

T 3
1 runs solo un-

til it’s poised to
execute s31

β12

T 1
2 runs solo un-

til it’s poised to
execute s12

β72

T 7
2 runs solo un-

til it’s poised to
execute s72

s12 s72

Figure 1: Execution α1

β11

T 1
1 runs solo un-

til it’s poised to
execute s11

β31

T 3
1 runs solo un-

til it’s poised to
execute s31

βx2

T x2 runs solo un-
til it’s poised to
execute sx2

s11 s31

Figure 2: Execution α2

αx2 sy1 β13

T y,13 runs solo
until it com-
mits

β33

T y,33 runs solo
until it com-
mits

β34

T x,34 runs solo
until it com-
mits

β14

T x,14 runs solo
until it com-
mits

Figure 3: Execution α3

αx2 sx2 γ14

T x,14 runs solo
until it com-
mits

γ34

T x,34 runs solo
until it com-
mits

γ33

T y,33 runs solo
until it com-
mits

γ13

T y,13 runs solo
until it com-
mits

Figure 4: Execution α′3

αx2 sy1 βz13

T y,z13 runs solo
until it commits

βz14

T x,z14 runs solo
until it commits

sx2 β5

T5 runs solo un-
til it commits

Figure 5: Execution α5

αx2 sx2 γz23

T y,z23 runs solo
until it commits

γz24

T x,z24 runs solo
until it commits

sy1 γ5

T5 runs solo un-
til it commits

Figure 6: Execution α′5
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ci1. (If there are more than one such steps, let si2 be the first.) Denote by βi2 the execution where
T i2 is executed solo from C3

1 until pi2 is poised to execute si2. Let αi2 = α3
1 · βi2 and let Ci2 be the

configuration that results from αi2.
Step 3. Definition of x. Let α1 = α3

1 · β12 · . . . · β72 · s12 · . . . · s72 (Figure 1). We argue that α1 is
legal. This is so since each pair of transactions among T 1

2 , . . . , T
7
2 access disjoint sets of transactional

variables, so by strict disjoint-access-parallelism, they do not contend on any base object.
We will define x so that process px2 doesn’t write in α1 (and therefore in βx2 ·sx2) to any base object

that is accessed in any of the steps s11, s
2
1, s

3
1 (Property 1).

For 1 ≤ i ≤ 7, denote by Ai2 the set of base objects modified by T i2 in α1. Notice that for
1 ≤ l,m ≤ 7, l 6= m, it holds that Al2 ∩ Am2 = ∅. Moreover, since we consider the case where k = 2,
si1, 1 ≤ i ≤ 3, accesses a set Oi1 of at most 2 base objects.

Let O1 =
3⋃
l=1

Ol1; it follows that O1 contains at most 2 · 3 = 6 base objects. Thus there exists an

index x, 1 ≤ x ≤ 7, such that Ax2 ∩O1 = ∅.
Step 4. Definition of y. Let α2 = αx2 · s11 · s21 · s31 (Figure 2). Recall that αx2 = α3

1 · βx2 . Since each
pair of transactions among T 1

1 , T
2
1 , T

3
1 do not conflict, by strict disjoint-access-parallelism, no pair of

steps among s11, s
2
1, s

3
1 contend. This and the definition of x imply that α2 is legal. Moreover, if Ai1,

1 ≤ i ≤ 3, is the set of base objects modified by T i1 in α2, then for each 1 ≤ l,m ≤ 3, l 6= m, it holds
that Al1 ∩ Am1 = ∅. Since sx2 accesses a set Ox2 of at most 2 base objects, it follows that there exists
an index y, 1 ≤ y ≤ 3, so that Ay1 ∩Ox2 = ∅. Notice that we defined y so that process py1 doesn’t write
in α2 (and therefore in βy1 · s

y
1) to any base object that is accessed in step sx2 (Property 2).

Step 5. Definition of z1. Starting from Cx2 , let process py1 execute one step. Since by definition
of x, no object modified in βx2 is accessed in sy1, it follows that this step (by py1) is sy1. Then let

a set of (distinct) processes p13, p
2
3, p

3
3, p

3
4, p

2
4, p

1
4 run solo (in this order) to execute T y,13 , T y,23 , T y,33 ,

T x,34 , T x,24 , T x,14 , respectively, until they commit (this will occur because of obstruction-freedom). Let
β13 , β

2
3 , β

3
3 , β

3
4 , β

2
4 , β

1
4 be these solo executions by p13, p

2
3, p

3
3, p

3
4, p

2
4, p

1
4, respectively. Let α3 = αx2 · s

y
1 ·

β13 · β23 · β33 · β34 · β24 · β14 (Figure 3).
Let A1

3, A
2
3, A

3
3, A

1
4, A

2
4, A

3
4 be the sets of base objects modified in β13 , β

2
3 , β

3
3 , β

1
4 , β

2
4 , β

3
4 , respectively.

We will define z1 so that Az14 ∩ Ox2 = ∅, Az13 ∩ Ox2 = ∅; moreover, it holds that T y,z13 reads 1 for byz1
and T x,z14 reads 0 for cxz1 in α3 (Property 3).

Since each pair of transactions among T x,34 , T x,24 T x,14 do not conflict, the intersection of any pair
of sets among A1

4, A
2
4, A

3
4 is empty. Since Ox2 contains at most two base objects, there are at most

two such sets that have a non-empty intersection with Ox2 . Thus, there exists an index z1, 1 ≤ z1 ≤ 3
such that Az14 ∩Ox2 = ∅. Since T x2 and T y,z13 do not conflict, it holds also that Az13 ∩Ox2 = ∅.

We prove that T y,z13 reads 1 for byz1 . Notice that T y,13 and T x2 do not conflict, so T y,13 and T x2 do

not contend. Moreover, among the set of transactions T 1
1 , T

2
1 , T

3
1 , it is only T y1 that T y,13 conflicts

with. Thus, α3 is indistinguishable from αy1 · s
y
1 to p13. By definition of sy1, T y,13 reads 1 for by1 in

αy1 · s
y
1. Since αy1 · s

y
1 is indistinguishable from α3 to p13, T

y,1
3 reads 1 for by1 in α3. Thus, the write

serialization point of T y1 should come before the read serialization point of T y,13 in α3 and so before

the read serialization points of T y,23 and T y,33 . Thus, T y,z13 reads 1 for byz1 in α3.

Similarly, by strict disjoint-access-parallelism, transaction T x,14 doesn’t access any base object
modified in sy1 or in β13 , β

2
3 , β

3
3 , β

3
4 , β

2
4 . Thus α3 is indistinguishable from αx2 to p14. By definition

of sx2 , transaction T x,14 reads 0 for cx1 in αx2 . Thus, T x,14 reads 0 for cx1 in α3. Thus, the write

serialization point of T x2 in α3 should come after the read serialization point of T x,14 and so after the

read serialization points of T x,24 and T x,34 . It follows that T x,z14 reads 0 for cxz1 in α3.

Let α4 = αx2 · s
y
1 · β

z1
3 · β

z1
4 . Since transactions T y,13 , T y,23 , T y,33 do not conflict with each other, and

the same is true for T x,14 , T x,24 , T x,34 , by strict disjoint-access-parallelism, it follows that α4 is legal.
Executions α3 and α4 are indistinguishable for processes pz13 and pz14 . So, it holds that transaction
T y,z13 reads 1 for byz1 and T x,z14 reads 0 for cxz1 in α4.
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Step 6. Definition of z2. Starting from Cx2 , let process px2 execute sx2 . Then let each of p14, p
2
4, p

3
4,

p33, p
2
3, p

1
3 run solo (in this order) to execute T x,14 , T x,24 , T x,34 , T y,33 , T y,23 , T y,13 , respectively, until they

commit (this will occur because of obstruction-freedom). Let γ14 , γ
2
4 , γ

3
4 , γ

3
3 , γ

2
3 , γ

1
3 be these solo exe-

cutions by p14, p
2
4, p

3
4, p

3
3, p

2
3, p

1
3, respectively. Let α′3 = αx2 · sx2 · γ14 · γ24 · γ34 · γ33 · γ23 · γ13 (Figure 4).

Let B1
3 , B

2
3 , B

3
3 , B

1
4 , B

2
4 , B

3
4 be the sets of base objects modified in γ13 , γ

2
3 , γ

3
3 , γ

1
4 , γ

2
4 , γ

3
4 , respectively.

We will define z2 so that Bz2
3 ∩ O

y
1 = ∅, Bz2

4 ∩ O
y
1 = ∅; moreover, it holds that T x,z24 reads 2 for cxz2

and T y,z23 reads 0 for byz2 in α′3 (Property 4).

Since each pair of transactions among T y,13 , T y,23 , T y,33 do not conflict, the intersection of any pair
of sets among B1

3 , B
2
3 , B

3
3 is empty. Since Oy1 contains at most 2 base objects, there are at most two

such sets that have a non-empty intersection with Oy1 . Thus, there exists an index z2, 1 ≤ z2 ≤ 3
such that Bz2

3 ∩O
y
1 = ∅. Since T y1 and T x,z24 do not conflict, it holds also that Bx,z2

4 ∩Oy1 = ∅.
We prove that T x,z24 reads 2 for cxz2 . Clearly, α′3 is indistinguishable from αx2 ·sx2 to p14. By definition

of sx2 , T x,14 reads 2 for cx1 in αx2 · sx2 . Since αx2 · sx2 is indistinguishable from α′3 to p14, T
x,1
4 reads 2 for

cx1 in α′3. Thus, the write serialization point of T x2 should come before the read serialization point of

T x,14 in α′3 and so before the read serialization points of T x,24 and T x,34 . Thus, T x,z24 reads 2 for cxz2 in
α3.

Similarly, by strict disjoint-access-parallelism, transaction T y,13 doesn’t access any base object

modified in βy+1
1 , . . . , β31 , in βx2 · sx2 or in γ14 , γ

2
4 , γ

3
4 , γ

3
3 , γ

2
3 . Thus α′3 is indistinguishable from αy1 to p13.

By definition of sy1, transaction T y,13 reads 0 for by1 in αy1. Thus, T y,13 reads 0 for by1 in α′3. Therefore,

the write serialization point of T y1 in α′3 should come after the read serialization point of T y,13 and so

after the read serialization points of T y,23 and T y,33 . It follows that T y,z23 reads 0 for byz2 in α′3.

Let α′4 = αx2 · s
y
1 · γ

z2
4 · γ

z2
3 . Since transactions T x,14 , T x,24 , T x,34 , T y,13 , T y,23 , T y,33 do not conflict

with each other, by strict disjoint-access-parallelism, it follows that α′4 is legal. Execution α′3 is
indistinguishable from α′4 to pz23 and pz24 . So, it holds that transaction T x,z24 reads 2 for cxz2 and T y,z23
reads 0 for byz2 in α′4.

Step 7. Executions β5 and γ5 are indistinguishable to process p5. Consider now the executions
α5 = α4 · sx2 · β5 = αx2 · s

y
1 · β

z1
3 · β

z1
4 · sx2 · β5 and α′5 = α′4 · s

y
1 · γ5 = αx2 · sx2 · γ

z2
3 · γ

z2
4 · s

y
1 · γ5

(Figures 5 and 6). Recall that β5 and γ5 are solo executions of transaction T5 (which is executed
by process p5 and reads the data items ayx, dy, ex) until T5 commits (obstruction-freedom guarantees
that this will occur). Recall also that αx2 = β11 · β21 · β31 · βx2 .

Since T5 does not conflict with T y,z13 and T x,z14 (T y,z23 and T x,z24 ), in executions βz13 and βz14 (γz23
and γz24 , respectively), processes pz13 and pz14 (pz23 and pz24 ) do not modify any base object read in β5
(γ5). Moreover, by definition, steps sy1 and sx2 do not contend. It follows that β5 is indistinguishable
from γ5 to p5. Thus T5 reads the same values for ayx, dy, and ex in both α5 and α′5.

Step 8. Snapshot isolation is violated in either α5 or in α′5. Recall that T y,z13 reads 1 for byz1
in α4 so it reads 1 for byz1 in α5. Therefore, in α5, the write serialization point of T y1 precedes the
read serialization point of T y,z13 , and thus also that of T5. So, T5 reads 1 for dy in β5 (notice that no
transaction other than T y1 writes to dy). Similarly, recall that T x,z24 reads 2 for cxz2 in α′4 so it reads
2 for cxz2 in α′5. Therefore, in α′5, the write serialization point of T x2 precedes the read serialization
point of T x,z24 , and thus also that of T5. So, T5 reads 2 for ex in γ5 (notice that no transaction other
than T x2 writes to ex). Since β5 is indistinguishable from γ5 to p5 , T5 reads 1 for dy and 2 for ex
in both executions. Thus, the write serialization points of T y1 and T x2 are placed before the read
serialization point of T5 in both executions. Depending on which one of them is going first, T5 reads
either 1 or 2 for ayx. Assume that T5 reads 1 for ayx (the case that T5 reads 2 for ayx is ”symmetric”).
We argue that snapshot isolation is violated in α5. Recall that T y,z13 reads 1 for byz1 in α5, thus the
write serialization point of T y1 must come before the read serialization point of T y,z13 . T y,z13 finishes
its execution before the beginning of T x,z24 , so the read serialization point of T y,z13 precedes the read
serialization point of T x,z24 . Recall that T x,z14 reads 0 for cxz1 in α4, and therefore also in α5. Thus,
the read serialization point of T x,z14 must come before the write serialization point of T x2 . It follows
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that the write serialization point of T y1 precedes the write serialization point of T x2 , which implies
that transaction T5 must read 2 for ayx. A contradiction.

3.2 General case

Theorem 3.2. No obstruction-free STM can ensure both snapshot isolation and strict disjoint-
access-parallelism. This holds even if the system provides primitives that can atomically access k
base objects, where k ≥ 1 is any integer.

Proof. Suppose there is an obstruction-free STM which ensures both snapshot isolation and strict
disjoint-access-parallelism. We first describe the general strategy of the proof in the same way as
it was done in the previous section. For the proof we will the following transactions, all executed
by distinct processes: (1) for each 1 ≤ i ≤ k + 1, transaction T i1 (executed by pi1) writes value 1
to ai1, . . . , a

i
k(k+1)+1, b

i
1, . . . , b

i
k+1, di; (2) for each 1 ≤ i ≤ k(k + 1) + 1, transaction T i2 (executed by

pi2) writes value 2 to a1i , . . . , a
k+1
i , ci1, . . . , c

i
k+1, ei; (3) for each 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ k + 1,

transaction T i,j3 reads from bij ; (4) for each 1 ≤ i ≤ k(k + 1) + 1 and 1 ≤ j ≤ k + 1, transaction T i,j4

reads from cij .

We will construct two executions: α5 = αx2 · s
y
1 ·β

z1
3 ·β

z1
4 · sx2 ·β5 and α′5 = αx2 · sx2 · γ

z2
3 · γ

z2
4 · s

y
1 · γ5,

where x and y, 1 ≤ x ≤ k(k + 1) + 1, 1 ≤ y ≤ k + 1, are indices to be determined later which indicate
transactions T y1 and T x2 which have some desired properties among the sets of T i1, 1 ≤ i ≤ k + 1, and

T j2 , 1 ≤ j ≤ k(k + 1) + 1. Similarly, indices z1 and z2, 1 ≤ z1, z2 ≤ k + 1, are to be determined later.

Roughly speaking, (1) αx2 is an execution where each of the processes p11, . . . , p
k+1
1 , px2 executes solo a

part of the transactions T 1
1 , . . . , T

k+1
1 , T x2 , respectively, (2) βz13 , βz14 , γz23 , and γz24 are solo executions

of transactions T y,z13 , T x,z14 , T y,z23 , and T x,z24 , respectively, (3) finally, β5 and γ5 are solo executions
of a new transaction T5 by distinct process p5 which reads the data items ayx, dy, ex. We will prove
that (1) α5 and α′5 are legal executions, (2) executions β5 and γ5 are indistinguishable to process p5,
and (3) snapshot isolation is violated in either β5 or γ5. The proof is structured in steps.

Step 1. Definition of executions αi1, configurations Ci1 and steps si1. For 1 ≤ i ≤ k + 1 we
will inductively define a sequence of executions αi1, steps si1, and configurations Ci1. Let C0

1 = C0

(i.e., C0
1 is an initial configuration), α0

1 be an empty execution and s01 be an empty step. Fix any

1 ≤ i ≤ k + 1 and assume that ∀j, 0 ≤ j < i, αj1, C
j
1 and sj1 have been defined. Let transaction T i1 be

executed solo (by pi1) from configuration Ci−11 . Since pi1 runs solo, obstruction-freedom implies that

T i1 eventually commits. Let C
′i
1 be the configuration resulting from the execution of the last step

of T i1. If transaction T i,13 is executed solo from C
′i
1 , then in the resulting execution, T i,13 reads the

value 1 written by T i1 for bi1, otherwise snapshot isolation is violated. If transaction T i,13 is executed

solo from configuration Ci−11 , then in the resulting execution, T i,13 reads 0 for bi1, otherwise snapshot
isolation is violated. Thus, there exists a step si1 in the solo execution of T i1 from Ci−11 , resulting

in a configuration C
′′i
1 , such that (1) if T i,13 is executed solo from the configuration just before si1,

then in the resulting execution, T i,13 reads 0 for bi1; (2) and if T i,13 is executed solo from C
′′i
1 , then in

the resulting execution T i,13 reads the value 1 written by T i1 for bi1. (If there are more than one such
steps, let si1 be the first.) Denote by βi1 the execution where T i1 is executed solo from Ci−11 until pi1
is poised to execute si1. Let αi1 = αi−11 · βi1 and let Ci1 be the configuration that results from αi1.

Step 2. Definition of executions αi2, configurations Ci2 and steps si2. Fix any 1 ≤ i ≤ k(k + 1) + 1.

Let transaction T i2 be executed solo (by pi2) from configuration Ck+1
1 . Since pi2 runs solo, obstruction-

freedom implies that T i2 eventually commits. Let C
′i
2 be the configuration resulting from the execution

of the last step of T i2. If transaction T i,14 is executed solo from C
′i
2 , then in the resulting execution,

T i,14 reads the value 2 written by T i2 for ci1. If transaction T i,14 is executed solo from configuration

Ck+1
1 , then in the resulting execution, T i,14 reads 0 for ci1. Thus, there exists a step si2 in the solo

execution of T i2 from Ck+1
1 , resulting in a configuration C

′′i
2 , such that (1) if T i,14 is executed solo
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Figure 7: Execution α1
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from the configuration just before si2, then in the resulting execution, T i,14 reads 0 for ci1; (2) and if

T i,14 is executed solo from C
′′i
2 , then in the resulting execution T i,14 reads the value written by T i2 for

ci1. (If there are more than one such steps, let si2 be the first.) Denote by βi2 the execution where

T i2 is executed solo from Ck+1
1 until pi2 is poised to execute si2. Let αi2 = αk+1

1 · βi2 and let Ci2 be the
configuration that results from αi2.

Step 3. Definition of x. Let α1 = αk+1
1 ·β12 · . . . ·β

k(k+1)+1
2 ·s12 · . . . ·s

k(k+1)+1
2 (Figure 7). We argue

that α1 is legal. This is so since each pair of transactions among T 1
2 , . . . , T

k(k+1)+1
2 access disjoint

sets of transactional variables, so by strict disjoint-access-parallelism, they do not contend on any
base object.

We will define x so that process px2 doesn’t write in α1 (and therefore in βx2 ·sx2) to any base object

that is accessed in any of the steps s11, . . . , s
k+1
1 (Property 1).

For 1 ≤ i ≤ k(k + 1) + 1, denote by Ai2 the set of base objects modified by T i2 in α1. Notice that
for 1 ≤ l,m ≤ k(k + 1) + 1, l 6= m, it holds that Al2 ∩ Am2 = ∅. Moreover, si1, 1 ≤ i ≤ k + 1, accesses
a set Oi1 of at most k base objects.

Let O1 =
k+1⋃
l=1

Ol1; it follows that O1 contains at most k(k + 1) base objects. Thus there exists an

index x, 1 ≤ x ≤ k(k + 1) + 1, such that Ax2 ∩O1 = ∅.
Step 4. Definition of y. Let α2 = αx2 · s11 · . . . · s

k+1
1 (Figure 8). Recall that αx2 = αk+1

1 ·βx2 . Since

each pair of transactions among T 1
1 , . . . , T

k+1
1 do not conflict, by strict disjoint-access-parallelism,

no pair of steps among s11, . . . , s
k+1
1 contend. This and the definition of x imply that α2 is legal.

Moreover, if Ai1, 1 ≤ i ≤ k + 1, is the set of base objects modified by T i1 in α2, then for each

1 ≤ i, j ≤ k + 1, i 6= j, it holds that Ai1 ∩ A
j
1 = ∅. Since sx2 accesses a set Ox2 of at most k base

objects, it follows that there exists an index y, 1 ≤ y ≤ k + 1, so that Ay1 ∩ Ox2 = ∅. Notice that we
defined y so that process py1 doesn’t write in α2 (and therefore in βy1 · s

y
1) to any base object that is

accessed in step sx2 (Property 2).
Step 5. Definition of z1. Starting from Cx2 , let process py1 execute one step. Since by definition

of x, no object modified in βx2 is accessed in sy1, it follows that this step (by py1) is sy1. Then let a set

of (distinct) processes p13, . . . , p
k+1
3 , pk+1

4 , . . . , p14 run solo (in this order) to execute T y,13 , . . . , T y,k+1
3 ,

T x,k+1
4 , . . . , T x,14 , respectively, until they commit (this will occur because of obstruction-freedom).

Let β13 , . . . , β
k+1
3 , βk+1

4 , . . . , β14 be these solo executions by p13, . . . , p
k+1
3 , pk+1

4 , . . . , p14, respectively. Let

α3 = αx2 · s
y
1 · β13 · . . . · β

k+1
3 · βk+1

4 · . . . · β14 (Figure 9).

Let A1
3, . . . , A

k+1
3 , A1

4, . . . , A
k+1
4 be the sets of base objects modified in β13 , . . . , β

k+1
3 , β14 , . . . , β

k+1
4 ,

respectively. We will define z1 so that Az14 ∩ Ox2 = ∅, Az13 ∩ Ox2 = ∅; moreover, it holds that T y,z13
reads 1 for byz1 and T x,z14 reads 0 for cxz1 in α3 (Property 3).

Since each pair of transactions among T x,14 , . . . , T x,k+1
4 do not conflict, the intersection of any pair

of sets among A1
4, . . . , A

k+1
4 is empty. Since Ox2 contains at most k base objects, there are at most k

such sets that have a non-empty intersection with Ox2 . Thus, there exists an index z1, 1 ≤ z1 ≤ k+ 1
such that Az14 ∩Ox2 = ∅. Since T x2 and T y,z13 do not conflict, it holds also that Az13 ∩Ox2 = ∅.

We prove that T y,z13 reads 1 for byz1 . Notice that T y,13 and T x2 do not conflict, so T y,13 and T x2 do

not contend. Moreover, among the set of transactions T 1
1 , . . . , T

k+1
1 , it is only T y1 that T y,13 conflicts

with. Thus, α3 is indistinguishable from αy1 · s
y
1 to p13. By definition of sy1, T y,13 reads 1 for by1 in

αy1 · s
y
1. Since αy1 · s

y
1 is indistinguishable from α3 to p13, T

y,1
3 reads 1 for by1 in α3. Thus, the write

serialization point of T y1 should come before the read serialization point of T y,13 in α3 and so before

the read serialization points of T y,23 , . . . , T y,k+1
3 . Thus, T y,z13 reads 1 for byz1 in α3.

Similarly, by strict disjoint-access-parallelism, transaction T x,14 doesn’t access any base object

modified in sy1 or in β13 , . . . , β
k+1
3 , βk+1

4 , . . . , β24 . Thus α3 is indistinguishable from αx2 to p14. By

definition of sx2 , transaction T x,14 reads 0 for cx1 in αx2 . Therefore, T x,14 reads 0 for cx1 in α3. Thus,
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the write serialization point of T x2 in α3 should come after the read serialization point of T x,14 and so

after the read serialization points of T x,24 , . . . , T x,k+1
4 . It follows that T x,z14 reads 0 for cxz1 in α3.

Let α4 = αx2 · s
y
1 · β

z1
3 · β

z1
4 . Since transactions T y,13 , . . . , T y,k+1

3 do not conflict with each other,

and the same is true for T x,14 , . . . , T x,k+1
4 , by strict disjoint-access-parallelism, it follows that α4 is

legal. Executions α3 and α4 are indistinguishable for process pz13 and for process pz14 . So, it holds
that transaction T y,z13 reads 1 for byz1 and T x,z14 reads 0 for cxz1 in α4.

Step 6. Definition of z2. Starting from Cx2 , let process px2 execute sx2 . Then let each of

p14, . . . , p
k+1
4 , pk+1

3 , . . . , p13 run solo (in this order) to execute T x,14 , . . . , T x,k+1
4 , T y,k+1

3 , . . . , T y,13 , re-

spectively, until they commit (this will occur because of obstruction-freedom). Let γ14 , . . . , γ
k+1
4 ,

γk+1
3 , . . . , γ13 be these solo executions by p14, . . . , p

k+1
4 , pk+1

3 , . . . , p13, respectively. Let α′3 = αx2 · sx2 · γ14 ·
. . . · γk+1

4 · γk+1
3 · . . . · γ13 (Figure 10).

Let B1
3 , . . . , B

k+1
3 , B1

4 , . . . , B
k+1
4 be the sets of base objects modified in γ13 , . . . , γ

k+1
3 , γ14 , . . . , γ

k+1
4 ,

respectively. We will define z2 so that Bz2
3 ∩ O

y
1 = ∅, Bz2

4 ∩ O
y
1 = ∅; moreover, it holds that T x,z24

reads 2 for cxz2 and T y,z23 reads 0 for byz2 in α′3 (Property 4).

Since each pair of transactions among T y,13 , . . . , T y,k+1
3 do not conflict, the intersection of any pair

of sets among B1
3 , . . . , B

k+1
3 is empty. Since Oy1 contains at most k base objects, there are at most k

such sets that have a non-empty intersection with Oy1 . Thus, there exists an index z2, 1 ≤ z2 ≤ k + 1
such that Bz2

3 ∩O
y
1 = ∅. Since T y1 and T x,z24 do not conflict, it holds also that Bx,z2

4 ∩Oy1 = ∅.
We prove that T x,z24 reads 2 for cxz2 . Clearly, α′3 is indistinguishable from αx2 ·sx2 to p14. By definition

of sx2 , T x,14 reads 2 for cx1 in αx2 · sx2 . Since αx2 · sx2 is indistinguishable from α′3 to p14, T
x,1
4 reads 2 for

cx1 in α′3. Thus, the write serialization point of T x2 should come before the read serialization point of

T x,14 in α′3 and so before the read serialization points of T x,24 , . . . , T x,k+1
4 . Thus, T x,z24 reads 2 for cxz2

in α3.
Similarly, by strict disjoint-access-parallelism, transaction T y,13 doesn’t access any base object

modified in βy+1
1 , . . . , βk+1

1 , in βx2 · sx2 or in γ14 , . . . , γ
k+1
4 , γk+1

3 , . . . , γ23 . Thus α′3 is indistinguishable

from αy1 to p13. By definition of sy1, transaction T y,13 reads 0 for by1 in αy1. Thus, T y,13 reads 0 for by1
in α′3. Thus, the write serialization point of T y1 in α′3 should come after the read serialization point

of T y,13 and so after the read serialization points of T y,23 , . . . , T y,k+1
3 . It follows that T y,z23 reads 0 for

byz2 in α′3.

Let α′4 = αx2 · s
y
1 · γ

z2
4 · γ

z2
3 . Since transactions T x,14 , . . . , T x,k+1

4 , T y,13 , . . . , T y,k+1
3 do not conflict

with each other, by strict disjoint-access-parallelism, it follows that α′4 is legal. Execution α′3 is
indistinguishable from α′4 to pz23 and pz24 . So, it holds that transaction T x,z24 reads 2 for cxz2 and T y,z23
reads 0 for byz2 in α′4.

Step 7. Executions β5 and γ5 are indistinguishable to process p5. Consider now the executions
α5 = α4 · sx2 · β5 = αx2 · s

y
1 · β

z1
3 · β

z1
4 · sx2 · β5 and α′5 = α′4 · s

y
1 · γ5 = αx2 · sx2 · γ

z2
3 · γ

z2
4 · s

y
1 · γ5

(Figures 11 and 12). Recall that β5 and γ5 are solo executions of transaction T5 (which is executed
by process p5 and reads the data items ayx, dy, ex) until T5 commits (obstruction-freedom guarantees

that this will occur). Recall also that αx2 = β11 · . . . · β
k+1
1 · βx2 .

Since T5 does not conflict with T y,z13 and T x,z14 (T y,z23 and T x,z24 ), in executions βz13 and βz14 (γz23
and γz24 , respectively), processes pz13 and pz14 (pz23 and pz24 ) do not modify any base object read in β5
(γ5). Moreover, by definition, steps sy1 and sx2 do not contend. It follows that β5 is indistinguishable
from γ5 to p5. Thus T5 reads the same values for ayx, dy, and ex in both α5 and α′5.

Step 8. Snapshot isolation is violated in either α5 or in α′5. Recall that T y,z13 reads 1 for byz1
in α4 so it reads 1 for byz1 in α5. Therefore, in α5, the write serialization point of T y1 precedes the
read serialization point of T y,z13 , and thus also that of T5. So, T5 reads 1 for dy in β5 (notice that no
transaction other than T y1 writes to dy). Similarly recall that T x,z24 reads 2 for cxz2 in α′4 so it reads
2 for cxz2 in α′5. Therefore, in α′5, the write serialization point of T x2 precedes the read serialization
point of T x,z24 , and thus also that of T5. So, T5 reads 2 for ex in γ5 (notice that no transaction other
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than T x2 writes to ex). Since β5 is indistinguishable from γ5 to p5 , T5 reads 1 for dy and 2 for ex
in both executions. Thus, the write serialization points of T y1 and T x2 are placed before the read
serialization point of T5 in both executions. Depending on which one of them is going first, T5 reads
either 1 or 2 for ayx. Assume that T5 reads 1 for ayx (the case that T5 reads 2 for ayx is ”symmetric”).
We argue that snapshot isolation is violated in α5. Recall that T y,z13 reads 1 for byz1 in α5, thus the
write serialization point of T y1 must come before the read serialization point of T y,z13 . T y,z13 finishes
its execution before the beginning of T x,z24 , so the read serialization point of T y,z13 precedes the read
serialization point of T x,z24 . Recall that T x,z14 reads 0 for cxz1 in α4, and therefore also in α5. Thus,
the read serialization point of T x,z14 must come before the write serialization point of T x2 . It follows
that the write serialization point of T y1 precedes the write serialization point of T x2 , which implies
that transaction T5 must read 2 for ayx. A contradiction.

4 SI-DSTM

4.1 Algorithm

We present a simple algorithm, called SI-DSTM, that satisfies obstruction-freedom and
R/W-independent snapshot isolation; it also satisfies the additional property [10, 31] that of two
concurrent transactions writing to the same data item, only one can commit. The algorithm ensures
strict disjoint-access-parallelism between a read-only transaction and any other (read-only or update)
transaction. Update transactions are weak disjoint-access-parallel. The algorithm is a simplified ver-
sion of DSTM [24].

For each active transaction T , SI-DSTM maintains a record with fields: (i) Status: stores the cur-
rent status of T (takes values Active, Committed, or Aborted, initially Active), (ii) pendingStatus:
records whether T should eventually abort (takes values Active, Committed, or Aborted, initially
Committed), and (iii) readList: stores information about the data items that are read by T .

As in DSTM, for each data item, the algorithm maintains two records, Locator and TMObject

(see Algorithm 1). Locator consists of three fields: (1) a pointer to the record of the transaction
that holds the ownership of this data item, (2) a copy of its previous value, and (3) a copy of its new
value. TMObject contains a reference to a record of type Locator. SI-DSTM ensures a one-to-one
correspondence between data items and TMObjects. Thus, when we say that SI-DSTM reads a data
item x by calling ReadTMObject (or WriteTMObject), we mean that ReadTMObject (or
WriteTMObject) is called with a reference to the TMObject that corresponds to x as its argument.

To read a data item x, ReadTMObject finds first the value of x (line 25). If the status of
the transaction that holds the ownership of a data item is Active or Aborted, then the value of the
object is found in the oldObject field of its locator; otherwise, it is taken from the newObject field of
it (see pseudo-code for GetCurrentValue(), lines 16-19). If there is no element for x in T ’s read
list, such an element is added there. Notice that, in contrast to what happens in DSTM, read-only
transactions never cause any other transaction to abort. ValidateReadList() checks whether each
data item in T ’s read list is still consistent (see a discussion related to this at the end of the section).
The comparison of line 22 is performed between references to avoid the ABA problem.

In WriteTMObject(), if the ownership of x is already held by T , then the new value is written
in the newObject of current x’s locator (lines 33-35). Otherwise, as in DSTM, cloning and indirection
are employed: a new locator is created for x and its transaction field is initialized to point to the
transactional record of T (lines 36-38). Then, T repeatedly tries to change the start field of the
TMObject of x to point to this new locator (line 44). Before doing so, it writes the value Aborted in
the pending status of the transaction that T found to be the holder of the ownership of x.

When T calls CommitTransaction(), it simply exchanges the value in the pendingStatus field
of its transactional record with that of the status field. It then reads status again and returns true
or false depending on whether it finds the value Committed or Aborted there.
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1 Transaction: 2 Locator: 3 TMObject:
{Active, Committed, Aborted} status Transaction transaction Locator start
{Active, Committed, Aborted} pendingStatus Object oldObject
List<TMObject, Object> readList Object newObject

Transaction BeginTransaction():
4 Transaction newTransaction = new Transaction()
5 newTransaction.status = Active
6 newTransaction.pendingStatus = Committed
7 newTransaction.readList = new List<TMObject, Object>
8 return newTransaction

TMObject CreateTMObject(Object value):
9 Locator newLocator = new Locator()
10 newLocator.transaction = null
11 newLocator.oldObject = null
12 newLocator.newObject = value.clone()
13 TMObject newTMObject = new TMObject()
14 newTMObject.start = newLocator
15 return newTMObject

Object GetCurrentValue(Locator locator):
16 Transaction currentTransaction = locator.transaction
17 if (currentTransaction == null OR currentTransaction.status == Committed)
18 return locator.newObject
19 return locator.oldObject

boolean ValidateReadList(Transaction transaction):
20 for each <TMObject tmObject, Object value> in transaction.readList
21 Object currentValue = GetCurrentValue(tmObject.start)
22 if (currentValue 6= value)
23 return false
24 return true

Object ReadTMObject(Transaction transaction, TMObject tmObject):
25 Object currentValue = GetCurrentValue(tmObject.start)
26 if (not tmObject in transaction.readList)
27 transaction.readList.add(<tmObject, currentValue>)
28 if (not ValidateReadList(transaction))
29 AbortTransaction(transaction)
30 return null
31 return currentValue

boolean WriteTMObject(Transaction transaction, TMObject tmObject, Object newValue):
32 Locator oldLocator = tmObject.start
33 if (oldLocator.transaction == transaction) // transaction still has the ownership
34 oldLocator.newObject = newValue.clone()
35 return true
36 Locator newLocator = new Locator()
37 newLocator.transaction = transaction
38 newLocator.newObject = newValue.clone()
39 while (true):
40 oldTransaction = oldLocator.transaction // abort the transaction holding the ownership
41 if (oldTransaction 6= null)
42 oldTransaction.pendingStatus = Aborted
43 newLocator.oldValue = GetCurrentValue(oldLocator)
44 if (CAS(tmObject.start, oldLocator, newLocator)) // try to set a new locator
45 return true
46 oldLocator = tmObject.start // reread the reference to the locator

boolean AbortTransaction(Transaction transaction):
47 transaction.status = Aborted
48 return true

boolean CommitTransaction(Transaction transaction):
49 xchg(transaction.status, transaction.pendingStatus) // swap status and pendingStatus
50 return transaction.status == Committed

Algorithm 1: The data structures and pseudo-code of SI-DSTM
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Object ReadTMObject(Transaction transaction, TMObject tmObject):
1 Locator locator = tmObject.start
2 if (locator.transaction == transaction)
3 return locator.newObject
4 Object currentValue = GetCurrentValue(locator)
5 if (not tmObject in transaction.readList)
6 transaction.readList.add(<tmObject, currentValue>)
7 if (not ValidateReadList(transaction))
8 AbortTransaction(transaction)
9 return null
10 return currentValue

Algorithm 2: A modification to ReadTMObject that makes SI-DSTM satisfying snapshot isolation

In SI-DSTM read-only transactions can be invisible. Technically, SI-DSTM does not need main-
tain shared transactional records for read-only transactions. Each such transaction T needs only to
maintain a read list at its private memory space. Moreover, T never causes any other transaction to
abort, so it never performs any non-trivial operation to any field of the transactional record of any
other transaction. T only reads the status fields of the transactional records of other transactions
to discover the current values of the data items read by T and owned by these transactions.

For simplicity, in Algorithm 1, we present a version of SI-DSTM which maintains a transactional
record for each transaction including read-only transactions, and in which each read-only transaction
performs an exchange operation in CommitTransaction(), however, this action is not necessary
for them.

In order to achieve strict disjoint-access-parallelism between any read-only transaction T and
update transactions, in SI-DSTM Locator contains an additional field pendingStatus in each trans-
actional record. If a transaction T1 performs a write operation to a data item x for which a transaction
T2 holds the ownership, T1 does not write Aborted in the status field of T2; it rather writes this
value in pendingStatus to indicate that T2 should abort later. At committing, T2 performs an ex-
change of pendingStatus and status and finds out that it has to abort. It is only after this exchange
that other transactions are aware that T2 aborts. In this way, read-only transactions that read data
items owned by T2 contend only with T2 and not T1 or other update transactions that write in the
transactional record of T2. However, by the pseudo-code, if T reads the status of T2, then T and T2
conflict on some data item x. Thus strict disjoint-access-parallelism is ensured between a read-olny
transaction and any other transaction.

Consider three transactions T , T ′, and T ′′ and assume that T writes data items x1 and x2, T
′

writes x2 and x3, and T ′′ writes x3 and x4. Consider an execution where T , T ′, and T ′′ execute
sequentially, first T ′, then T , and finally T ′′. Obviously, T and T ′′ do not conflict. Still, they will
contend on the status field of T ′’s transactional record. Thus, strict disjoint-access-parallelism is not
ensured between update transactions. However, it is easy to see that weak disjoint-access-parallelism
is ensured even in this case.

Obviously, a transaction will manage to finish its execution successfully, if it runs solo for a
sufficient amount of time. However, if a read-only transaction is executed concurrently with up-
date transactions, SI-DSTM does not provide any guarantee that the read-only transaction will not
abort repeatedly forever. Moreover, in the presence of contention, an update transaction may never
terminate its execution since it may execute the body of the while loop of line 39 forever.

A version of SI-DSTM, that satisfies snapshot isolation instead of R/W-independent snapshot
isolation, can be easily derived from the pseudo-code presented in Algorithm 1. In order to do so
we need to modify the pseudo-code of the ReadTMObject routine as shown in Algorithm 2. The
main difference is that in the new version, a transaction checks whether it holds the ownership to
the data item being read; if it is so, the ReadTMObject routine returns the value written by this
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transaction and does not add the data item to the read list.

4.2 Correctness Proof

For an execution α and a configuration C, let full(C,α) be the sequence of alternating steps from
α and configurations resulting from execution of these steps in order starting from C.

Recall that for each transaction T there is a unique record of type Transaction and each data item
x corresponds to a unique TMObject. We denote by transT the Transaction object corresponding
to transaction T .

Fix any execution α of SI-DSTM started from the initial configuration C0. We use the following
notation to denote the order relation between two configurations C1 and C2 in full(C0, α):

• C1 < C2 if C1 precedes C2 in α;

• C1 > C2 if C2 < C1;

• C1 ≤ C2 if either C1 < C2 or C1 is C2;

• C1 ≥ C2 if C2 ≤ C1.

We say that a transaction T writes to data item x in α if T executes WriteTMObject passing
a reference to the TMObject corresponding to x as an argument. Similarly, T reads the value of data
item x in α if T executes ReadTMObject passing a reference to the TMObject corresponding to
x as an argument. Denote by R(T ) the set of data items such that x ∈ R if and only if transaction
T reads the value of x in α. Similarly, define as W (T ) the set of data items such that x ∈W if and
only if transaction T writes to x in α. Without loss of generality, we assume that R(T ) 6= ∅.

For any committed transaction T , let Cw(T ) be the configuration just after the execution of line 49
in the execution of T in α; since T is a committed transaction, the value of the transT .status field is
Committed at Cw(T ). Let Cr(T ) be the configuration just after the response of GetCurrentValue
called at line 25 during the execution of the last instance of ReadTMObject executed by T .

For any data item x, we denote by tmx the TMObject corresponding to x. This TMObject
exists in any configuration C after its creation. We denote by locx(C) the Locator object referenced
to by tmx.start at C.

For any configuration C, we define the value of x at C, denoted by vx(C), as follows:

• if locx(C).transaction is null or locx(C).transaction.status is Committed, then vx(C) =
locx(C).newObject;

• otherwise, vx(C) = locx(C).oldObject.

For any committed transaction T and any x ∈ W (T ), we denote by nvx(T ) the value of the third
argument of the last execution of WriteTMObject for x by T in α. Informally, nvx(T ) is the last
value written by T to x.

We say that transaction T holds the ownership for data item x in configuration C if
locx(C).transaction points to transT . Let C1

T (x) be the first configuration of α such that T holds
the ownership for x at C1

T (x) and let C2
T (x) be the first configuration of α such that C2

T (x) > C1
T (x)

and T doesn’t hold the ownership for x at C2
T (x). Let also αT (x) be the execution fragment of α

starting from C1
T (x) up until C2

T (x).
Let GCV be any instance of GetCurrentValue executed by T at line 21 or line 25 in α.

Denote by d(GCV ) a data item defined as follows:

• if GCV is called at line 25, then d(GCV ) is the data item corresponding to the TMObject
passed as the second argument to the instance of ReadTMObject which calls GCV .
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α a fixed execution
R(T ) the read set of a committed transaction T
W (T ) the write set of a committed transaction T
Cr(T ) the configuration just after the response of GetCurrentValue called at line 25 during

the execution of the last instance of ReadTMObject executed by T in α
Cw(T ) the configuration just after the execution of line 49 in the execution of the last instance

of ReadTMObject by a committed transaction T
tmx the TMObject corresponding to data item x
locx(C) the Locator object pointed to by tmx.start at configuration C
vx(C) if locx(C).transaction is null or locx(C).transaction.status is Committed then

vx(C) = locx(C).newObject; otherwise, vx(C) = locx(C).oldObject
nvx(T ) the last value written by a committed transaction T to x
C1
T (x) the first configuration of α such that T holds the ownership for x at C1

T (x)
C2
T (x) the first configuration of α such that C2

T (x) > C1
T (x) and T doesn’t hold the ownership

for x at C2(x)
αT (x) the execution fragment of α starting from C1

T (x) up until C2
T (x)

d(GCV ) if GCV is an instance of GetCurrentValue then d(GCV ) is a data item defined as
follows:
• if GCV is called at line 25, then d(GCV ) is the data item corresponding to the
TMObject passed as the second argument to the instance of ReadTMObject which
calls GCV . • if GCV is called at line 21, then d(GCV ) is the data item corresponding
to TMObject that is accessed by the for loop at line 20 just before GCV was called.

GCVf the instance of GetCurrentValue executed at line 25 in the first call of
ReadTMObject for the fixed data item x by the fixed transaction T

GCVl the instance of GetCurrentValue executed at line 21 in the last call of Vali-
dateReadList by the fixed transaction T

Cf a configuration such that GCVf returns vx(Cf ), and this configuration is between the
read of the parameter GCVf and its return

Cl a configuration such that GCVl returns vx(Cl), and this configuration is between the
read of the parameter GCVl and its return

Figure 13: Notation used in this section

• if GCV is called at line 21, then d(GCV ) is the data item corresponding to TMObject that is
accessed by the for loop at line 20 just before GCV was called.

For convenience of the reader, the used notation is summarized in Figure 13.

Theorem 4.1. SI-DSTM satisfies R/W-independent snapshot isolation.

Informally, the outline of the proof is the following. First, in Lemma 4.2, we prove that transaction
T holds the ownership for all data items in its write set W (T ) in configuration Cw(T ). This implies
that for all x ∈ W , vx(Cw) = nvx(T ). Then, in Lemma 4.3, we prove that for any configuration
C and data item x, vx(C) is the value written by the last committed transaction which executed
line 49. These two lemmas imply that the write serialization point for T must be placed at Cw(T ).

We also provide two lemmas to prove that the read serialization point for T can be placed at
Cr(T ). In Lemma 4.4, we prove that, for any instance GCV of GetCurrentValue there is a
configuration C between the invocation of GCV and its response such that GCV returns the value
of d(GCV ) at C. In other words, we ensure that GCV doesn’t return a value that this data item
had at some obsolete configuration. Lemma 4.4 is used for proving Lemma 4.5 which states that
for every data item x and every pair of configurations C and C ′ after the first read of x and before
the last validation, vx(C) = vx(C ′). We argue that Cr(T ) satisfies the constraints of Lemma 4.4
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and Lemma 4.5. This allows us to prove that by placing the read serialization point of T at Cr(T ),
SI-DSTM ensures R/W-independent snapshot isolation.

Lemma 4.2. Let T be a committed transaction in execution α. Then for any x ∈ W (T ), Cw(T ) ∈
αT (x).

Proof. Obviously, Cw(T ) > C1
T (x) because transaction T commits just after executing line 49 (i.e.

after Cw(T )) and so it cannot call any other routines after Cw(T ). Assume by contradiction, that
Cw(T ) > C2

T (x).
Let C be the configuration just before C2

T (x) in full(C0, α). Since, at C, transaction T still holds
the ownership of x, locx(C).transaction = transT . By the pseudo-code, there exists a transaction T ′

such that x ∈W (T ′) and T ′ executes successfully the CAS operation at line 44 at C. Thus, it follows
that T ′ read locx(C) when it read tmObject.start either at line 32 or on line 46. Thus, T ′ read transT
in oldLocator.transaction (line 40), evaluated the if condition of line 41 to true and changed the
pendingStatus of transT to Aborted at line 42. Since Cw(T ) > C2

T (x) and pendingStatus is changed
to Aborted before C2

T (x), it follows that T aborts in α, which is a contradiction. So, Cw(T ) ≤ C2
T (x)

and it holds that Cw(T ) ∈ αT (x).

Lemma 4.3. Let T be a committed transaction and x ∈W (T ) be any data item. For each configu-
ration C ≥ Cw(T ) in full(C0, α), if there is no committed transaction T ′ such that x ∈ W (T ′) and
Cw(T ) < Cw(T ′) ≤ C, then vx(C) = nvx(T ).

Proof. Assume by contradiction that the claim is not true and there is at least one configuration C ′′

such that Cw(T ) < C ′′ ≤ C and vx(C ′′) 6= nvx(T ). Let C ′ be the first such configuration. Lemma 4.2
implies that vx(Cw(T )) = nvx(T ), then vx(C) 6= vx(Cw(T ))

Let C− be the configuration just before C ′ in full(C0, α). As C− and C ′ are consecutive con-
figurations and vx(C−) 6= vx(C ′), then, by the pseudo-code, it holds that there exists a committed
transaction T ′ such that C ′ = Cw(T ′) and T ′ holds the ownership of x at C ′. We reach a contradic-
tion.

Lemma 4.4. Let GCV be any instance of GetCurrentValue, let x = d(GCV ) and r be the read
of tmx.start performed by T in order to determine the argument of GCV . Let C1 be the configuration
just before r is performed and C2 be the configuration just after GCV responds. Then, there exists a
configuration C, such that C1 ≤ C ≤ C2 and GCV returns vx(C).

Proof. The argument passed to GCV is a reference to locx(C1). Notice that any Locator object is
immutable (i.e. its fields do not change their values) after the execution of line 14 or the successful
execution of CAS at line 44.

If locx(C1).transaction = null or locx(C1).transaction = transT , then let C = C1. We argue
that the claim holds. In the first case, by the pseudo-code (lines 17-18) and by the definition of v(C1),
GCV returns vx(C) = vx(C1) = locx(C1).newObject. In the later case, as transT .status = Active

and T doesn’t change transT .status in the execution of GCV , then, by the pseudo-code (lines 17,19),
vx(C) = vx(C1) = locx(C1).oldObject.

Now assume that locx(C1).transaction = transT ′ where T ′ 6= T is some transaction. Let C ′ be
the configuration in full(C0, α) just before GCV reads transT ′ .status at line 17.

If transT ′ .status is Aborted or Active on C ′, then let C = C1. By the pseudo-code, GCV returns
locx(C1).oldObject. Obviously, transT ′ .status cannot be Committed at C1, thus, by the definition
of vx(C), vx(C1) = locx(C1).oldObject, and GCV return vx(C).

If transT ′ .status is Committed at C ′, then, by the pseudo-code, GCV returns locx(C1).newObject.
We consider two cases. Assume first that transT ′ .status is Active at C1. Then, it holds that
C1 < Cw(T ′) ≤ C ′. By the definition, vx(Cw(T ′)) = locx(Cw(T ′)).newObject. Let C = Cw(T ′) in
this case.
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If transT ′ .status is Committed at C1, let again C = C1. Then vx(C1) = locx(C1).newObject and
the claim holds when C = C1.

Thus, in both cases GCV returns vx(C).

Fix any committed transaction T and any data item x ∈ R(T ). Let GCVf be the instance of
GetCurrentValue executed at line 25 in the first call of ReadTMObject for x by T , and let
GCVl be the instance of GetCurrentValue executed at line 21 in the last call of ValidateRead-
List by T . Lemma 4.4 implies that there exists a configuration Cf (Cl) such that GCVf (GCVl,
respectively) return vx(Cf ) (vx(Cl), respectively) and this configuration is between the read of the
parameter GCVf (GCVl, respectively) and its return.

Lemma 4.5. For any configuration C such that Cf ≤ C ≤ Cl, vx(C) = vx(Cf ) = vx(Cl).

Proof. Recall that transT contains the readList field which stores the read list of T . Notice that
readList can be modified by T only at line 27. The check of the if statement at line 26 ensures
that only the first call of ReadTMObject for each data item modifies readList. So the data item
together with the value of x at Cf is stored in readList by executing line 27. This value is later
compared with vx(Cf ) by executing line 22 in ValidateReadList. Since T commits, it holds that
vx(Cf ) = vx(Cl).

Assume by contradiction that there exists at least one configuration C ′′ such that Cf < C ′′ <
Cl and v(C ′′) 6= v(Cf ). Denote the first such configuration by C ′ and let C− be its preceding
configuration. As C− and C ′ are consecutive configurations and vx(C−) 6= vx(C ′), by the pseudo-
code, it follows that there exists a committed transaction T ′ such that C ′ = Cw(T ′). By the pseudo-
code of the algorithm, v(C−) = loc(C−).oldObject, vx(C ′) = locx(C).newObject and the value of x
is never equal to locx(C−).oldObject at any configuration after C ′.

Because of cloning at lines 34 and 38, all values of x are unique (the values are the same only if
they have equal references), thus it follows that vx(Cl) 6= vx(Cf ). We reach a contradiction.

By the definition of Cr(T ), Cr(T ) occurs before the last call of ValidateReadList at line 28
by T . Since transT .readList 6= ∅, GCVl is an instance of GetCurrentValue called by this
ValidateReadList. By definition of Cl, it follows that Cr(T ) < Cl. Obviously, Cr(T ) > Cf by
definitions of Cr(T ) and Cf . Thus, Cf ≤ Cr(T ) ≤ Cl, and Lemma 4.5 implies the following corollary:

Corollary 4.6. If T is a committed transaction then, for every x ∈ R(T ), each ReadTMObject
performed by T and taking tmx as the argument returned value of x at Cr(T ).

Let T ′ be the committed transaction such that x ∈ W (T ′) and the write serialization point of
T ′ is the last write serialization point before the read serialization point of T . By the way isolation
points are assigned, (T ′)w is linearized at Cw(T ′). By the definition of T ′, there is no committed
transaction T ′′ such that x ∈W (T ′′) and Cw(T ′) < Cw(T ′′) < Cr(T ). Thus, Lemma 4.3 implies that
vx(Cr(T )) = nvx(T ′) which in turn implies that R/W-independent snapshot isolationis ensured.

4.3 Proof of Obstruction-Freedom and Disjoint-Access-Parallelism

We continue to prove that SI-DSTM satisfies obstruction-freedom.

Theorem 4.7. SI-DSTM is obstruction-free.

Proof. Let α be any execution and T be any transaction in this execution. Recall that a TM
algorithm is obstruction-free if a transaction T can be aborted only when processes other than the
one executing T take steps during the execution interval of T .

Assume that no other process takes steps during the execution of T . By the pseudo-code, T can
be aborted (i.e. transT .status set to Aborted) only in two cases:

• the pendingStatus field of its transactional record is set to Aborted before the execution of
line 49 by T ;
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• an instance of ValidateReadList executed by T returns false.

The first case is not possible, because T sets pendingStatus to Committed on line 6 and never
modifies its value afterwards, so, given that no other process has taken steps during the execution
of T , when T executes the exchange on line 49, it writes Committed into the status field of its
transactional record.

Assume now that an instance V RL of ValidateReadList called by T returns false (line 23)
and let x be the data item corresponding to tmObject that is accessed by the for loop of line 20.
Under the assumption that no other transaction is running concurrently to T , the check on line 22
executed during V RL cannot fail. This is so, since by the pseudo-code, values written by T cannot
be returned as the result of an execution of any GetCurrentValue instance before T commits.
So we reach a contradiction, thus the claim holds.

Clearly, SI-DSTM doesn’t satisfy strict disjoint-access-parallelism between update transactions.
To prove this consider a counterexample execution with three transactions: T1 which writes to data
items x and y, T2 which writes to x, and T3 which writes to y. If T1 performed writes to x and y but
not committed yet, and then T2 and T3 perform writes to x and y, respectively, then both T2 and
T3 may contend on transT1 .pendingStatus when executing line 42. Thus, T2 and T3 contend on the
same base object while they do not conflict.

We will define a new form of disjoint-access-parallelism, called read-disjoint-access-parallelism,
and we will show that SI-DSTM satisfies this property.

Definition 4.8. We say that a TM implementation is read-disjoint-access-parallel, if, for each exe-
cution α and every two transactions T1 and T2 in α, if α|T1 and α|T2 contend on some base object,
then one of the following conditions holds:

• both T1 and T2 are update transactions and there is a path between T1 and T2 in the conflict
graph of the minimal execution interval of α containing α | T1 and α | T2;

• at least one of T1 and T2 is a read-only transaction and there is an edge between T1 and T2 in
the conflict graph of α.

Informally, read-disjoint-access-parallelism states that weak disjoint-access-parallelism is ensured
between update transactions and strict disjoint-access-parallelism is ensured between a read-only
transaction and all other transactions.

Finally, we provide the proof that SI-DSTM satisfies read-disjoint-access-parallelism.

Theorem 4.9. SI-DSTM is read-disjoint-access-parallel.

Proof. Let α be any execution. By the pseudo-code, any Locator record is immutable (i.e. its fields
do not change their values) after the execution of line 14 or the successful execution of CAS on line 44.
Thus, no two transactions can contend on any field of a Locator record. Also by the pseudo-code, for
any transaction T in α, transT .readList can be accessed by transaction T only, thus no transaction
can contend with T on transT .readList.

Let T1 be any read-only transaction executed in α. By the pseudo-code, a read-only transaction
never acquires the ownership of any data item. Hence, the transaction field of any Locator record
is not a reference to the transactional record of a read-only transaction. This means that no other
transaction can read or modify any field of transT1 , so T1 and any other transaction cannot contend
on transT1 .status or transT1 .pendingStatus.

Assume that T1 stores a non-null value that is a reference to the transactional record of a trans-
action T2 to its local variable currentTransaction by executing line 16. By the pseudo-code, T2 is
an update transaction and T1 and T2 conflict on the same data item. It follows that there is an edge
between T1 and T2 in the conflict graph of α.
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Assume now that T1 and T2 are two update transactions that contend on some base object o
and at least one of them modifies the value of o in α. Without loss of generality, let T1 be this
transaction. By inspecting the pseudo-code, we consider the following cases:

1. o is transT1 .status and T1 contend with T2 when T1 executes line 49. It follows that T2 reads
transT1 .status on line 17 (notice that this is the only line in the pseudo-code that a transaction
reads the status field of a transactional record of some other transaction). Thus T1 and T2
conflict on the same data item x; specifically, T1 holds the ownership of x and T2 reads its
value;

2. o is transT1 .pendingStatus and T1 contend with T2 when T1 executes line 49. It follows that
T2 has modified transT1 .pendingStatus by executing line 42. Again, T1 and T2 conflict on the
same data item x, specifically, both T1 and T2 write to x;

3. o is transT2 .pendingStatus and T1 contend with T2 when T1 executes line 42. This case is
symmetric to the previous one;

4. o is transT3 .pendingStatus, where T3 is some transaction, other than T1 and T3, and T1 contend
with T3 when T1 executes line 42. By the assumption, T1 and T2 contend on
transT3 .pendingStatus. Since no transaction ever reads the pendingStatus field of any transac-
tional record, it must be that T2 also executes line 42 and contend with T3 on
transT3 .pendingStatus. It follows that T1 and T3 conflict, T2 and T3 conflict and thus there is a
path between T1 and T2 in the conflict graph of the minimal execution interval of α containing
α | T1 and α | T2;

5. o is tmx.start where x is some data item and T1 contend with T2 when T1 executes line 44. By
the pseudo-code, T2 also executes line 44 when T2 writes to x, so T1 and T2 conflict.
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